
Auto-Approximation of Graph Computing

Zechao Shang
The Chinese University of Hong Kong

Hong Kong, China

zcshang@se.cuhk.edu.hk

Jeffrey Xu Yu
The Chinese University of Hong Kong

Hong Kong, China

yu@se.cuhk.edu.hk

ABSTRACT

In the big data era, graph computing is one of the challenging issues

because there are numerous large graph datasets emerging from real

applications. A question is: do we need to know the final exact an-

swer for a large graph? When it is impossible to know the exact

answer in a limited time, is it possible to approximate the final an-

swer in an automatic and systematic way without having to design-

ing new approximate algorithms? The main idea behind the ques-

tion is: it is more important to find out something meaningful quick

from a large graph, and we should focus on finding a way of making

use of large graphs instead of spending time on designing approx-

imate algorithms. In this paper, we give an innovative approach

which automatically and systematically synthesizes a program to

approximate the original program. We show that we can give users

some answers with reasonable accuracy and high efficiency for a

wide spectrum of graph algorithms, without having to know the

details of graph algorithms. We have conducted extensive experi-

mental studies using many graph algorithms that are supported in

the existing graph systems and large real graphs. Our extensive

experimental results reveal that our automatically approximating

approach is highly feasible.

We live in a system of approximations.

—— Ralph Waldo Emerson

1. INTRODUCTION
In the big data era, graph computing is one of the challenging

issues, because there are numerous large graph data-sets emerging

from real applications, for example, bibliographic networks, online

social networks, Wikipedia, Internet web page networks, etc. How-

ever, many graph problems are as hard as NP-HARD, and are diffi-

cult to be parallelized and/or distributed. Even a ‘well-parallelized’

polynomial algorithm may not finish within reasonable time when

we have billions edges. The questions that arise here are: do we al-

ways need to know the final exact answer for a large graph always?

If computing exact answer takes time, is it possible to approximate

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivs 3.0 Unported License. To view a copy of this li
cense, visit http://creativecommons.org/licenses/byncnd/3.0/. Obtain per
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 14
Copyright 2014 VLDB Endowment 21508097/14/10.

the final answer in an automatic and systematic way without de-

signing new approximate algorithms, which are extremely difficult

not only for end-users but also for graph algorithm experts? The

main idea behind the questions is more data will beat clever algo-

rithms [13]. In other words, it becomes more important to find out

something meaningful quick from a large graph, and we should fo-

cus on finding a way of making full use of large graphs instead of

spending time on designing approximate algorithms.

However, this is not easy. We cannot understand what a pro-

gram is trying to compute, even with access to the source codes. A

tiny modification can turn the program upside down. This makes it

hard to analyze the effect of any change of the program when we

approximate the original program. Without understanding the se-

mantics of the algorithm to be approximated, auto-approximation

seems unapproachable.

In this paper, as the first attempt, we introduce an innovative sys-

tem which can automatically synthesize an approximate program

for a graph algorithm. Our main contributions are summarized as

follows. First, we discover a phenomenon that we can give users

some answers with reasonable accuracy and high efficiency for a

wide spectrum of graph algorithms by slightly altering the program,

without having to know the details of graph algorithms. Second, we

discuss the quality of the approximate function, and show how the

system can be implemented. Third, we have conducted extensive

experimental studies using many graph algorithms and large real

graphs. Our extensive experimental results reveal that our automat-

ically approximating approach is highly possible.

Compared with the traditional approximation paradigm, our pro-

posed system has the following advantages:

• Autonomic: Our system requires minimum user involvement.

Users are relieved from implementing, debugging, parameter

tuning of the approximate program.

• High efficiency and low error rate: For some algorithms we

can speed up the computing time 10x with 0 error rate. For

a wide spectrum of graph algorithms, our system achieves on

average 1% error in half of the computing time.

• Orthogonal with graph algorithms: The approach we take is

orthogonal to the approaches that design an approximation

algorithm for a specific graph problem.

• Independent of graph systems: Our system does not rely on

any specific graph computing system. Decoupling it from

graph systems does not only minimize the configuration need-

ed, but also allows our solution to benefit from all future per-

formance improvement from the underlying graph system.

• Independent of the graph datasets: Our system can be widely

applied to various graphs used in different applications.

The organization of our paper is as follows. In Section 2 we re-

view existing graph computing paradigms. In Section 3 we discuss

1833

approximated UDF for auto-approximation. In Section 4 we explain

our auto approximation approach in detail. In Section 5 we exam-

ine the systematic aspects of our approach. In Section 6 we discuss

the limitations of our work and extensions. In Section 7 we report

our experimental studies. The related works are discussed briefly

in Section 8. We conclude this paper and discuss future work in

Section 9.

2. GRAPH COMPUTING
In this section, we briefly review the state-of-the-art graph com-

puting systems, mainly focusing on the computing model they adopt.

Graph System Developer
Sync. Supportance

VC
Sync. Async. BSP

Cassovary [36] Twitter ✓ ✓ ✓ ✓

Faunus [32] Aurelius ✓ ✓ ✓ ✓

Galois [40] UTexas ✓ ✓ ✓ ✓

Giraph [34] Apache ✓ ⋆

Giraph++ [50] IBM ✓ ⋆

GPS [45] Stanford ✓ ⋆

GRACE [51] Yale ✓ ✓

Grace [42] Microsoft ✓ ⋆

GraphChi [27] CMU ✓ ⋆

GraphLab [30, 17] CMU ✓ ✓ ✓

GraphX [52] UC Berkeley ✓ ✓ ✓ ✓

Grappa [38] Washington ✓ ✓

Green-Marl [19] Stanford ✓ ✗

HAMA [35] Apache ✓ ⋆

Horton [46] Microsoft ✓

Ligra [48] CMU ✓ ✓

Medusa [54] NTU ✓ ⋆

Mizan [24] KAUST ✓ ⋆

Naiad [37] Microsoft ✓ ✓ ✓ ⋆

PEGASUS [23, 22] CMU ✓

Pregel [31] Google ✓ ⋆

Pregelix [4] UC Ivern ✓ ⋆

Seraph [53] PKU ✓ ⋆

Surfer [7] MSRA ✓ ⋆

Trinity [47] MSRA ✓ ✓ ✓ ✓

Unicorn [10] Facebook ✓ ✓ ✓ ✓

X-Stream [44] EPFL ✓ ✗

Table 1: Graph Systems (Sync. Supportance column indicates

whether the system adopts synchronized (S), asynchronized

(A), and BSP (B). VC column indicates whether VC is the only

model supported(⋆) or supported(✓), or not supported(✗))

Vertex-Centric (VC): As introduced in Pregel [31], by the vertex-

centric computing approach, every computer applies a user-defined

function (UDF) on every vertex in a graph in parallel. The vertex-

centric model has great expressiveness and has been widely ac-

cepted by almost all graph systems to implement various graph al-

gorithms. In Table 1, the VC column indicates whether a graph

system supports the vertex-centric computation. As observed in

Table 1, almost all graph systems support the VC computing ap-

proach, while a half of them support nothing but VC.

Synchronization: We discuss synchronized, asynchronized, and

BSP in brief, which control the observed staleness of the messages

from vertices to other vertices. For the synchronized systems, a ver-

tex receives messages immediately without observable staleness.

For the asynchronized systems, there is possible (uncertain) delay

in delivering messages. BSP computes in iterations (or super-steps)

therefore the staleness is exactly one iteration. Generally speak-

ing, the less staleness, the more overhead the system has to pay

for maintaining the consistency. On the other hand, staleness, es-

pecially unbounded one, makes the program harder to reason and

harder to debug.

User-defined function (UDF): Following the vertex-centric pro-

gramming model the application developers need to implement a

user-defined function (UDF). A UDF is a program or program frag-

ment written in high level programming languages like C++ and

Java. The UDF takes a message iterator as its input. With the

message iterator, for a vertex vi, the UDF can access all incoming

messages from its in-neighbors, compute its value for vi based on

all incoming messages, and send message(s) to its out-neighbors.

During the computing, each vertex also owns a local storage to keep

intermediate values.

3. APPROXIMATING GRAPH COMPUTING

VIA APPROXIMATED UDF

3.1 Overview
A classical work-flow of graph computing is shown in Fig. 1(a).

A graph algorithm, represented by a UDF, is implemented by the

end-user. The end-user passes it to the graph computing system.

The system executes it on vertices iteratively, and passes the final

result back to the user.

End-User
Graph

Execution

Result

UDF

System

Iterative

(a) Original Computing

End-User
Graph

Execution

Auto

UDF

SystemApprox.

Iterative

Approx. UDF

Approx. Result

(b) Auto-Approx. Computing

Figure 1: Overview of Our Approach

Our approach is to systematically auto-approximate the given

UDF by synthesizing at the source level as illustrated in the mid-

dle of Fig. 1(b). At runtime, the graph computing system can use

the synthesized UDF to improve the performance with error control

(the right side of Fig. 1(b)), assuming that graph algorithms are ex-

ecuted iteratively by the system. Finally, the approximated results

will be sent back to the end-user.

In this section, we concentrate on the issue why approximating

UDF leads to the approximation of the result in practice, from a

theoretical point of view. We begin with the state-of-the-art ap-

proximating in Section 3.2, and give the necessary notations in Sec-

tion 3.3. We discuss the continuous UDF in Section 3.4 and discrete

UDF in Section 3.5. We will discuss how to auto-approximate UDFs

in Section 4.

Our approach is to deal with UDF when processing a graph prob-

lem. However our auto-approximation approach is independent of

the graph problem because we deal with it at the UDF level. It is

worth noting that our approach works for UDFs that may be de-

signed to give either the exact answer or an approximate answer.

In addition, our approach is independent of graph systems for the

same reason. Such independence is highly desirable to support a

wide range of graph related problems.

1834

3.2 Where Are We?
We briefly review the development of auto-approximation com-

puting. By auto, we mean the approximation is expected to be im-

plemented with minimal user activities, and targeting many prob-

lems, if not all of them.

Approximation Methods
Problems

P1 P2 P3 P4 P5 . . .

The (Not Existing) Panacea ⋆ ⋆ ⋆ ⋆ ⋆ . . .

Complete Approach ⋆ ✗ ✗ ✓ ⋆ . . .

Sound Approach ⋆ ⋆ ⋆ . . .

Our Approach ⋆ ⋆ ✓ ⋆ ⋆ . . .

Table 2: Possible Solutions

Ideally, an approximation solution shall work well on all prob-

lems. Unfortunately it is not possible. Restricted by the Rice’s

theorem [43] which states any semantical property for any Turing-

complete language is undecidable, it is basically impossible to infer

anything in a sound and complete way. In other words, no one can

invent an automatic solution to precisely guess what query can be

approximated. Not to mention how to approximate. Therefore, all

existing methods either work in a complete way or a sound way

(or neither). The complete methods are able to approximate all

problems but may produce good or bad approximation. The sound

methods only apply to certain problems with guaranteed perfor-

mance. During the past decades, most of the research focused on

the sound approaches, for example, approximating the SQL [16]

and the numerical computing [39]. We have to point out that the

SQL tables and matrices are both regular structures. Unfortunately

previous research made little progress on irregular problems, like

graphs.

In this paper, we do not attempt to invent new sophisticated ap-

proximation methods. Instead, as a main contribution, we show that

iterative graph problems implemented in VC can be easily approx-

imated by approximating the UDF. In other words, approximating

UDF coarsely leads to accurate final approximation results in the

iterative and vertex-centric graph computing. We analogize it to

the “law of large numbers” [14] and “the wisdom of crowds” [49].

Millions of vertices repeatedly make their decisions via UDF ex-

ecutions. Therefore the final decision is the ensemble of billions

tiny local decisions. The inaccuracy in local decisions will likely

be tolerated by the final one and will not affect its accuracy. Since

the big graphs are usually highly irregular, our approach breaks the

barrier of automatically approximating complex problems on com-

plex structures. On the implementation, we take ordinary complete

methods to approximate UDFs. Besides the the complete methods

mentioned in our paper, we expect others will work as well under

our framework.

3.3 Notations
Consider a directed and unweighted graph G = (V,E), where

V is the set of vertices, and E ⊆ V × V is the set of edges. We

denote vi 7→ vj if (vi, vj) ∈ E. We denote the set of in-neighbors

of a vertex vi in G by NI(vi) = {vj | vj 7→ vi}, the set of out-

neighbors of a vertex vi in G by NO(vi) = {vj | vi 7→ vj}, and the

set of neighbors of a vertex vi as N(vi) = (NI(vi)∪NO(vi)). The

degree, in-degree, and out-degree of a vertex vi in G are denoted

as d(vi) = |N(vi)|, dI(vi) = |NI(vi)|, and dO(vi) = |NO(vi)|.
The UDF can be formalized as a function f(·) with inputs and

outputs. Throughout this paper, we interchangeably use function

and program to represent f(·). The vertex vi’s input set of function

f(·) in the iteration t is denoted as Ii,t. Recall for VC computing,

a value is associated with each vertex. We denote the value asso-

ciated with vi ∈ V at the time (iteration) t, as vi,t, and use Vt to

represent all such vertex values, [v1,t, v2,t, · · · , vn,t], as a vector,

at time t. The initial time is t = 0, and V0 are the initial values

to start. For a vertex vi, f(·) will take Ii,t as the input in the t-th
iteration, change the value of vi, vi,t = f(Ii,t).

Example 3.1: Consider PageRank (PR) with a damping λ to com-

pute PageRank for every vertex vi. Let vi,t be the PageRank for vi
at the time t. We have

vi,t =
∑

(j,i)∈E

vj,t−1

dO(vj)
× (1− λ) + λ

Here, vi,0 = 1
n

. Following our formulation, there is a UDF f(·),

f(Ii,t) =
∑

s∈Ii,t

s× (1− λ) + λ

✷

3.4 Continuous f(·)
We discuss the continuous f(·) first. The input messages, output

messages, and the values associated with vertices are all assumed

continuous (real values). Without loss of generality, we also as-

sume the computing is modeled as BSP for easier discussion.

V0

f
V1

f
V2 V3 Vl

f

V0

f ′

V
′

1

f ′

V
′

2 V
′

3 V
′

l

f ′

E2

Figure 2: Approximating f(·) Iteratively

Fig. 2 depicts the main idea of our approach. Starting from V0,

f(·) computes Vt from Vt−1 iteratively until the termination condi-

tion is satisfied. Suppose we can synthesize an approximate func-

tion f ′(·). We can use f ′(·) instead of f(·) to compute from V ′
t−1

to V ′
t in every iteration. Let the absolute difference between Vt and

V ′
t be Et = |Vt − V ′

t|. Here, the absolute value of a vector is the

vector containing absolute value of each element.

To further discuss the error, we introduce ∆f ′ and Lf ′ to depict

the function f ′(·). The former is for the difference between f(x)
and f ′(x). We say f ′(x) is at most ∆f ′ away from f(x) if,

|f(x)− f ′(x)| ≤ ∆f ′ |x|, ∀x ∈ R
n

(1)

The latter is the Lipschitz continuity for measuring the smoothness

of f(·). Here, f(·) is a Lipschitz continuous function, if for all

x and y, Eq. (2) holds, where Lf is the Lipschitz constant for a

function f(·).

|f(x)− f(y)| ≤ Lf |x− y|, ∀x, y ∈ R
n

(2)

A function f(·) may be implicitly influenced by the hidden fac-

tors that depend on G but remain unchanged in iterations. To deal

with such hidden factors, we use a weight matrix W ∈ R
|V |×|V |,

in which Wi,j indicates a numerical value for an edge vi 7→ vj ,

fixed and unchanged in iterations. We bring W into attention be-

cause the absolute approximation error is hard to infer since too

many factors are involved during the computing. The W helps us

build connections from approximation error to other numerical er-

rors, and finally leads to relative error. For Example 3.1, we have

Wi,j =

{

1/dO(vi) if vi 7→ vj
0 otherwise

1835

Therefore, for the computing process, we assume

vi,t = f(Ii,t) = f({vj,t−1 ×Wj,i : j 7→ i})

It is worth mentioning that W is hidden and is not required to be

known in our approximation approach. We only use it for error

analysis and discussions.

Consider Ei,t with Eq. (1) and Eq. (2), we have

Ei,t = |vi,t − v
′
i,t|

= |f(Ii,t)− f ′(I′
i,t)|

≤ |f(Ii,t)− f ′(Ii,t)|+ |f ′(Ii,t)− f ′(I′
i,t)|

≤ ∆f ′ × |Ii,t|+ Lf ′ × |Ii,t − I′
i,t| (3)

≤ ∆f ′ × (Vt−1W)i + Lf ′ × (Et−1W)i (4)

The Eq. (3) is from the definition of ∆f ′ and Lf ′ , and the Eq. (4)

is from the definition of computing and error term.

The intuitive explanation for Eq. (4) is as follows, consider the

error Et = [E1,t, E2,t, · · · , En,t] comparing with another error Es =
[E1,s, E2,s, · · · , En,s], where t > s. There are two components in

Et. One is the accumulated error that inherits from all previous er-

rors Es for s < t, that is related to Lf ′ × (Et−1W)i, and the other

is the error that is by f ′(·), that is related to ∆f ′ × (Vt−1W)i in

Eq. (4). Rewrite it in matrix form, we get

Et ≤ ∆f ′Vt−1W + Lf ′Et−1W

And the accumulated error at the final l-th iteration becomes as

follows.

El ≤ ∆f ′

l
∑

t=1

Ll−1−t
f ′ VtW

l−t
(5)

The Analysis of Error: Take a closer look at the error bound in

Eq. (5), the error is bounded by the sum of error terms inherited

from each iteration. The final error El inherits error ∆f ′Ll−1−t
f ′ Vt

W l−t from the t-th iteration. There are two powers in the error,

Ll−1−t
f ′ and W l−t. Informally, if the power is getting “big” as

the exponent increases, it diverges, otherwise converges. Whether

Ll−1−t
f ′ converges depends on whether |Lf ′ | is larger than 1, and

whether W l−t converges depends on the maximal absolute value of

the eigenvalues of W . Since we do not know f ′(·) and W , nor can

we infer them accurately, the final El after the last iteration l can be

large for a large l. However, in practice, we argue it is less likely to

occur. Consider at the first iteration it brings a small float-point er-

ror fpe. Then after l loops, using analysis similar as discussed, the

error could be as large as fpe × (LfW)l−1. A good approximate

function f ′(·), if close enough to the original f(·), owns similar

Lipschitz constant, therefore the final error term El should be small

as well as the error introduced by float-point error. If the error in-

troduced by fpe significantly affects the final result, the graph algo-

rithm itself is numerically unstable. Otherwise the error introduced

by our approximation is likely to be small. In summary, we believe

our approximation computing brings small error when the original

problem is well-formed.

3.5 Discrete f(·)
For the discrete case, the conclusion by Eq. (5) still applies, af-

ter redefining ∆f ′ and Lf ′ by restricting the domain on a discrete

one D instead of R. However, it is possible the value of ∆f ′ and

Lf ′ could be large or even unbounded. For example, the discrete

input of f(·) could represent array index, or vertex ID, instead of

numerical values. To address this question, Chaudhuri et al. in

[6] show that the notions of continuity from mathematical analysis

are relevant and interesting even for software. As discussed in [6],

shortest paths, minimum spanning trees, etc, have such a property.

Our experiments in this paper support this claim too. Therefore we

argue that even in discrete cases, programs are entirely possible to

show Lipschitz continuous. If they do, the auto-approximation will

work as well as the continuous case. Moreover, whether a program

is continuous could be testified efficiently [6].

Example 3.2: Take SSSP (Single Source Shortest Path, cf. Sec-

tion 7) as an example. In the VC implementation of SSSP, each

vertex’s distance to source is at most 1 plus the minimal distances

from the source to its neighbors. Therefore the f(·) is,

f(Ii,t) = min
s∈Ii,t

s+ 1

It is not hard to figure out Lf = 1. When f ′(·) is implemented by

sampling Ii,t, based on the non-negativity of distance, ∆f ′ = 1.

✷

4. AUTO APPROXIMATION
In the previous section, we show approximating function f(·)

leads to the approximation of the whole graph computation. In this

section, we introduce our work on how to automatically synthesize

approximated f ′(·) from the program source of f(·). Our method

takes program source as input and generates (approximated) pro-

gram source, which is almost transparent to the end-user and brings

minimal dependency on the underlying graph computing system.

For simplicity, throughout the paper the original program is called

f(·), and the approximated function to be synthesized is f ′(·).
In Section 4.1, we propose several patterns to transform the func-

tion f(·). In Section 4.2, we discuss how to implement these pat-

terns.

4.1 Ways to Approximate f(·)
We propose several alternative patterns to approximate f(·) as

follows. It includes replacing specific parts, caching results and

reducing workloads. Some of them only apply to certain function

f(·) while others apply to any f(·). These patterns can be individ-

ually applied to one f(·) to synthesize f ′(·) or combined.

4.1.1 Sampling

The number of inputs to a function, or the size of Ii,t (|Ii,t|), can

be very large, since most of the large scale graphs obey a power-law

degree distribution [8], and therefore the number of inputs, which

depends on the maximal degree among vertices, can be as large

as millions. With this regard, a function f ′(·) delivering similar

results based on the sample of input messages can efficiently reduce

the computing overhead. In Source Code 1, we take a 1/5 sample

of the messages by replacing Line 3 and 6 with Line 4 and 7.

1 double f_s(const vector<double>& msg) {
2 double sum = 0;
3 // for (int i = 0; i < msg.size(); i++)
4 for (int i = 0; i < msg.size(); i += 5)
5 sum += msg[i];
6 // return sum * (1 - d) + d;
7 return sum * 5 * (1 - d) + d;
8 }

Source Code 1: Approx. f(·) by Sampling Messages

4.1.2 Memorization

When f(·) is a heavy-weighted one, we can keep (a part of

records) from the previous executions of f(·), and infer the out-

put if the input is identical or similar to any previous one, without

executing f(·) again. The core ideas are illustrated in Algorithm 1.

1836

Algorithm 1: Memorization

Input: Ii,t, all incoming messages to vi
Data: D, the dictionary containing previous results

1 if D contains Ii,t then

2 return D.lookup(key = Ii,t)

3 else

4 vi,t ← f(Ii,t)
5 D.put(key = Ii,t, value = vi,t)
6 return vi,t

4.1.3 Task Skipping

For a vertex, we treat one execution of f(·) as the process of

decision making. Intuitively, the vertex does not need to make a

new decision every time: it can ignore the changes from neighbors

and keep the old decision, regardless the input. Based on this ob-

servation, each vertex can (randomly) skip the execution and keep

the previous result. This approach differs from the memorization

by whether the input is checked against previous ones. If it works,

it works better on vertices with a smaller degree, as their decisions

are usually not important to the “big picture”. On the other hand

the memorization works better on large degree vertices.

4.1.4 Interpolation

Suppose f(·) is a non-linear numerical function, sometimes it

can be approximated by (a combination of) linear functions or poly-

nomials. For example, if x is small (near 0), ex is approximated as

1 + x using Taylor series. The actual interpolation can be linear-

interpolation, discrete Fourier transformation, wavelet transforma-

tion, etc.

4.1.5 System Function Replacement

System built-in mathematical functions, like sin(·), are imple-

mented using (optimized) Taylor series. For example in one of the

C++ system dependent implementation sin is a 13-degree polyno-

mial. If the function f(·) calls any of them, they can be replaced by

some approximated functions, like the 2-degree polynomial Taylor

series.

4.2 Synthesize f ′(·)
We have built a prototype system using C++. In the following

we only discuss the main implementation techniques in C++. The

core ideas are easy to be migrated to other programming languages.

Section 4.2.1 discusses how to implement the sampling method in

Section 4.1.1, Section 4.2.2 addresses the implementation details

for methods discussed in Section 4.1.4 and 4.1.5, Section 4.2.3 dis-

cusses the issues discussed in Section 4.1.2 and 4.1.3.

4.2.1 Synthesis Message Sampler

We start with synthesize message samplers by which the function

f ′(·) works by operating on the sample of input message, fs. Take

Source Code 1 as an example. The fs usually has two parts. The

first one is the sampler which samples the input message set Ii,t.

In Source Code 1, the Line 4 acts as a sampler: it reads every five

message. The second part is a variation of f(·). It takes the sample

as input, and outputs calibrated result. The Line 7 in Source Code 1

compensates the result by multiplying 5. We use two examples to

show why the calibration is necessary and hard: if the function f(·)
sums up all the messages, assuming we sample 5% of the incoming

messages, the sum must be multiplied by 20 to compensate the

lost of messages. However, if f(·) is for calculating the average

of incoming messages, we do not need to calibrate the average of

sampled messages since it is unbiased.

Algorithm 2: Synthesize fs

Input: f(·), all incoming messages to vi
Output: The fs using sampled messages to approximate f(·)

1 Try to find calibration for f ′(·)
2 if successful then

3 Synthesize fs by concatenating
4 The message sampler
5 The function f(·) after calibration

6 else

7 Try to find calibration for intermediate variable(s)
8 Synthesize fs by concatenating
9 The message sampler

10 The function f(·) after calibration

The strategy of synthesizing is shown in Algo. 2. We try to find

the relationship between the input and output first. If it successes,

we assemble calibrated function with sampler together. If not, we

try to calibrate intermediate values instead.

Algorithm 3: Find the Appropriate Calibration fs

Input: f(·), all incoming messages to vi

1 repeat
2 Generate input message I
3 Sample input message Is
4 Execute f(·) with both I and Is
5 Record the outputs and sample rate

6 until enough data to perform regression;
7 Perform linear regression on the collected data

The routine of synthesis linear calibration fs is showed in Algo. 3.

We generate random input messages. For each input, we sample the

input I using varying sample rate γ and get sampled input Is. For

each I and Is, we execute the f(·) on both of them, and collect

the output as O and Os. We record O, Os, size of input |I| and

γ until we have enough data. Then we perform linear regression

on the records for the relationship among them. If it successes, the

synthesis is straightforward by feeding f(·) the sampled input and

multiplying the output by the calibration factor.

Besides the linear relationship, other known relations, like quadric,

could be tested too. However we found these techniques provide

little practice value in our experiment since usually the linear rela-

tion is enough and accurate. When it is not the case, extra relations

are not helping either.

It is possible that the linear regression fails to find meaningful

relationship between the input and the output. In this case, we try

to find the relation between input and intermediate result instead.

We start from building a variable dependency graph. Each vertex

in the graph is a variable in the program. If a variable a depends

on b, we introduce a directed edge from b to a. In Source Code 1,

there will be a directed edge from msg to sum in the corresponding

variable dependency graph.

Then for any intermediate variables, we analyze the relationship

between the input messages and the variable. Since the interme-

diate variables’ values are not output by the program, we add pro-

filing codes in the f(·) to print them. Then after each execution

of f(·), we collect their values and analyze them using the same

method shown in Algo. 3.

The analyzed result may render part of variables that have clear

relationship with the input messages and can be calibrated while

1837

1 |-FunctionDecl ... f ’double (const vector<double> &)’

2 | |-ParmVarDecl ... msg ’const vector<double> &’
3 ...

4 | | ‘-CompoundAssignOperator ... ’double’ lvalue ’+=’ ComputeLHSTy=’double’ ComputeResultTy=’double’

5 | | |-DeclRefExpr ... ’double’ lvalue Var 0x104305140 ’sum’ ’double’

6 | | ...

7 | | |-DeclRefExpr ... ’const vector<double>’:’const class std::vector<double...>’ lvalue ParmVar ... ’msg’

Figure 3: An AST Example

some of them are not. We can not calibrate all of them. Consider an

example, c is the final answer and c = a + b. Assume we can

calibrate all three variables a, b and c by multiplying a constant.

We may calibrate both a and b, or calibrate only c, which all lead

to unbiased result. But calibrating a and c, or all three variables

leads to biased result.

4.2.2 AST and Functions Replacement

The first step of program synthesis is to parse and tokenize the

program into abstract syntax tree (AST). We use clang to parse

the C++ code into the AST. Other program languages have their

own tools for AST parsing, especially considering most of them

support reflection. The AST fragment corresponding to the Line 1

to 3 of Source Code 1 is listed in Fig. 3. The keywords correspond-

ing to the sources are highlighted. It shows the relationship among

variables, functions, and statements. With the help of AST we can

synthesis approximated f ′(·) aiming on functions substitution, pro-

posed in Section 4.1.4 and 4.1.5. Take sin(·) as an example. We

write our customized version of standard library in off-line, which

contains sinc(·). When we are going to synthesize the f ′(·), we

traverse the AST of f(·) and look for the function call to sin(·).
We replace all calls to sin(·) by sinc(·).

4.2.3 Function Wrapper

Some approximation patterns, like those in Section 4.1.2 and

4.1.3, treat the function f(·) as nothing but a black box. For exam-

ple, for the result memorization in Algo. 1, the synthesized program

adds verification condition, and delegates input to f(·) when nec-

essary. An additional storage is used to store the memorized result.

The implementation is straightforward, even without the AST.

5. SYSTEM CONSIDERATIONS
In this section, beyond straightforward implementation, we in-

troduce several system-dependent issues which help better perfor-

mance and exploration.

5.1 Lightweight Samplers
In Source Code 1, Line 4, we propose a simple sampler which

accesses every five messages. This sampler is ultra-lightweight but

it is weak and may harm the accuracy of result since the samples

are not independently drawn. We propose two additional samplers

which are still lightweight but introduce less dependency among

messages. We illustrate them using the same example.

The first one is: the variable i starts from a randomly generated

small number instead of the fixed value 0. The messages in each

sample are still correlated, but each message has an uniform proba-

bility to be in the sample. The overhead is one extra call to random

number generator per vertex.

The second one works with sampling probability with 2−r for

some r. We take r random numbers and perform bit-wise AND op-

eration on them. Each bit of the result corresponds to one message,

and only bit-1s enable the message in the sampler. Assume the

final number is 0100001..., the 2nd and 7th messages are sam-

pled. The amortized overhead is about r random number calls per

e
rr

o
r

iteration

f ′ f

θ

(a) Iteration Threshold

 0

 5

 10

 15

 20

 25

 30

0 1 2 3 4 5 6 7 8 9 10 11 12 13

d
is

t.
 (

in
 p

e
rc

e
n

ta
g

e
)

degree (in log scale)

number of vertices
number of edges

(b) Aggregated degree dist.

Figure 4: Strategy for Auto-Approximations

64 messages assuming the computers are 64-bit addressing. The

sampler can ensure messages are independently drawn.

5.2 Computing Strategies

The Strategy on Error-Time Trade-off: After f ′(·) is synthe-

sized from the f(·), the default usage is to replace f(·) by f ′(·)
completely. However, from the Eq. (5), the t-th iteration owns

power Ll−1−t
f ′ W l−t. Assume Lf ′ and W converge, the earlier

the iteration, the smaller error term. In other words, later iterations

bring exponentially larger errors, although it is still under control

as discussed in previous. To optimize the trade-off between com-

puting time and the error, the approach we propose is to use an

approximate function f ′(·) for the first θ iterations, and then use

the given function f(·) for the remaining iterations until the last

l-th iteration, where θ < l. We denote θ as an iteration threshold.

The procedure is shown in Figure 4(a).

The Strategy on Sampling: When the degree of vertex is small,

sampling may introduce higher variance. We suggest using f ′(·)
when the degree is below a certain threshold τ and f(·) otherwise.

For the large scale graphs emerging in the “web era”, their degree

distribution is in “power-law” [8]. We take a large graph represent-

ing people friendship (cf. Section 7) as example. For better illustra-

tion, we discretized the vertices into buckets: a vertex with degree

d belongs to the ⌊2 log10(d)⌋-th bucket. For each bucket, we show

the percentage of vertices falls in this bucket and the number of

their edges, in Fig. 4(b). If the f(·)’s computational complexity

is linear, which is common in graph analytics, the number of total

edges reflects the workloads. We observe although the number of

vertices in middle buckets, say 4 to 9, is not large, their workload

dominates because the vertices in these buckets have exponentially

larger degree than vertices in bucket 1 to 3. If we sample messages

for vertices in bucket 4 and beyond, about 80% of workload falls

into the sampler. Therefore our degree threshold on sampling still

sample a large proportion of messages.

5.3 f ′(·) Evaluation
Ideally, we want to evaluate the performance of f ′(·) before ac-

tually executing it on a large graph. There are two measurements

when using an approximate function f ′(·) comparing with f(·):
effectiveness and efficiency. The effectiveness is to measure the

error: how close the approximate function f ′(·) is to the function

f(·). The efficiency is to estimate the time: how fast we can process

1838

the entire graph G using f ′(·). We sample graph G using different

sizes, and measure the error and time cost. There are two steps:

generate graph samples by random walk, and evaluate f ′(·) over

the graph samples.

Generate Graph Sample by Random Walk: Since it is not worth-

while to evaluate f ′(·) using the entire graph G, we need to sample

a small graph G′ to evaluate f ′(·). We adopt Random Walk sam-

pling: start with an arbitrary vertex, we choose one of its neighbors

to visit, and repeat this process until the total number of visited

vertices reaches a threshold. The sub-graph induced by the vertices

visited becomes a sample graph G′. From [29], the above process

delivers a uniform sample of all edges. There are other graph sam-

pling approaches [20], which can be used as candidates.

Predict Performance: For a given sample graph G′, we evaluate

f ′(·) over G′. Because our approach involves sampling messages

(Ii,v) for every vertex vi in every t-th iteration, we need to measure

the expected error term. We repeatedly evaluate f ′(·) in several

runs. With the evaluation result based on graph samples, we predict

the error and time for the entire graph G.

Predict the exact error is a hard problem. Base on the Eq. (5),

the error is affected by the number of iterations and the hidden in-

fluence matrix W . The number of iteration itself is hard to pre-

dict, and the hardness is confirmed in the work of PREDIcT [41].

The matrix W is hidden and hard to estimate too. Therefore we

propose predicting the relative rank among different approxima-

tion instead. Since all different approximation methods share same

iteration number and W , the relative rank only depends on Lf ′ and

∆f ′ . The rank of error estimated on the graph sample reflects these

property of f ′(·) which is effective on real graph too.

6. LIMITATIONS AND EXTENSIONS

6.1 Limitations of Our Approach
Despite our method is capable to handle a wide range of algo-

rithms, the following graph algorithms/operations are not in our

interest in this paper.

• Enumerative task: this kind of task asks listing the answers

instead of analytical values. For example, find the neighbors

of a specific vertex.

• Trivial task: the computational cost of this task is too small

for any kind of non-trivial approximation. For example, re-

port the degree of a specific vertex.

• Localized task: this kind of task’s result only depends on

a k-neighborhood of a specific vertex and k is small. For

example, find the number of triangles that include a specific

vertex.

6.2 Parallel and Distributed Computing
Although in this paper we focus on the main memory single-

machine computing, our approach can be naturally extended to

both parallel and distributed environment. Since our approach only

operates on UDF itself, replacing the original UDF by the synthe-

sized approximating UDF helps parallel and distributed execution

saving computational time as well as main memory single-machine

case.

We note that for the parallel and distributed computation, the

message communication time often dominates the overall compu-

tational time. Our message sampling method, which samples mes-

sages at receiver vertices in current setting, can be further extended

to sample messages at the sender vertex. We foresee this can signif-

icantly reduce the volume of communications and benefit parallel

and distributed environment.

6.3 Other Computing Models
In the previous sections, we discussed our approach for the vertex-

centric computing over BSP. Our approach can be applied to non

vertex-centric computing over either synchronized (S) or asyn-

chronized (A) model.

Non Vertex-Centric Computing: Some graph systems, like PE-

GASUS [23], model a graph as follows: vertices as a vector and

edges as a sparse matrix. Hence, the interaction between vertices

and the associated edges can be done by Sparse Matrix-Vector mul-

tiplication (SpMV). GraphX [52] performs graph operations on their

RDD platform, which is another variation of compact matrices and

vectors. Our approach can support SpMV, since SpMV is a special

case of VC.

X-Stream [44] uses an edge-centric computation model, where

the first-class citizen in computing is the edges instead of the ver-

tices. Although it can be more efficient and more concise on some

of the graph problems, the expressibility is still under investiga-

tion. Since the vertices and edges are symmetric, our approach can

be extended to support the edge-centric computing.

Synchronized/Asynchronized Computation: In the synchronized

computation, the output of function f(·) will be effective immedi-

ately, and a value becomes input of others without any latency in the

computation progress. In the worst case, the error occurring in syn-

chronized computation can be much larger than BSP, because the

error generated in every function will be propagated proportional to

the number of vertices multiplying the number of iterations, instead

of the number of iterations in BSP. In the asynchronized computa-

tion, the output of function f(·) will be synchronized with bound-

less latency. The asynchronized mode requires the least coordina-

tion overhead over all possibilities, while the data suffers from the

most inaccuracy caused by the uncertainty. In some iterations as

shown in [30], the asynchronized version of some algorithms may

not converge. Our methods can be directly applied in the asynchro-

nized environment. However the performance is not guaranteed

because it is affected by both our approach and the staleness which

is out of our control.

7. EXPERIMENTAL STUDIES
Both academic communities [33] and industry communities [3]

have attempted to design a well recognized benchmark for graph

databases. However, it still needs to take great efforts and time to

reach some consensus. In this paper, we select a collection of graph

algorithms, shown in Table 3. We select them carefully, consider-

ing the representativeness of the algorithms, the similarity among

algorithms, and the scalability of the algorithms. Eight graph algo-

rithms are selected in the experimental studies, and they are BFS

(Breadth-First Search), BM (Bipartite Matching), CC (Weak Con-

nected Components), D (Graph Diameter), KM (k-Means), PR

(Page Rank), SSSP (Single Source Shortest Path), and TC (Trian-

gle Counting). In Table 4 we list the graph algorithms that are used

as the most representative algorithms in the papers/websites for the

graph systems listed in Table 1. This table confirms our claim that

the algorithms selected are representative and well recognized in

the communities. For reference, the implementation and definition

of error are listed in Table 3. Let rf and rf ′ represent the results

from f(·) and f ′(·), the relative error is defined as |rf−rf′ |/|rf |.

The Lp norm of vector u is defined as Lp(u) = (
∑n

i=1 |ui|
p)

1/p,

and normalized Lp is defined as Lp(u−v)/Lp(v) when v is the cor-

responding vector of the f(·)’s result.

We have conducted extensive experiments on a PC with two Intel

Xeon X5550@2.67GHz CPU (16 cores) and 48GB main memory.

1839

Abbr. Algorithm Impl. Definition of Error

BFS Breadth-First Search [4] Average of relative error on each vertex’s distance

BM Bipartite Matching [35] Relative error of number of matches

CC Weak Connected Components [34] Normalized L0

D Diameter [17] Average of relative error on each distance’s reachable pair count

KM k-Means [45] Relative error of sum of distances

PR Page Rank [31] Normalized L2

SSSP Single Source Shortest Path [34] Normalized L1

TC Triangle Counting [4] Relative error of number of triangles

Table 3: Algorithms Used in Experiments

Name BFS BM CC D KM PR SSSP TC

Faunus ✓

Galois ✓ ✓ ✓ ✓ ✓

Giraph ✓ ✓ ✓ ✓

Giraph++ ✓ ✓

GPS ✓ ✓ ✓ ✓ ✓

GRACE ✓ ✓ ✓

Grace ✓ ✓ ✓ ✓

GraphChi ✓ ✓ ✓

GraphLab ✓ ✓ ✓ ✓ ✓ ✓

GraphX ✓ ✓ ✓

Green-Marl ✓

HAMA ✓ ✓ ✓ ✓

Ligra ✓ ✓ ✓

Medusa ✓ ✓ ✓

Mizan ✓

Naiad ✓ ✓ ✓

PEGASUS ✓ ✓

Pregel ✓ ✓ ✓

Pregelix ✓ ✓ ✓ ✓ ✓

Seraph ✓ ✓ ✓

Surfer ✓ ✓

Trinity ✓ ✓

X-Stream ✓ ✓ ✓

Table 4: Graph Systems and Algorithms (✓ represents the algo-

rithm is one of the system’s example. All algorithms are supported in

all systems which support VC)

All experiments are repeated 10 times and the average value is re-

ported. We analyze the user programs using LLVM 3.3 and compile

it using clang 3.3.

For the parameters adopted by the algorithms, in KM the num-

ber of clustering (k) is 100, and it repeats 50 iterations. For PR,

it repeats 10 iterations with damping constant 0.15. For others,

the algorithm terminates at the fix point, i.e. when the result does

not change further, or at the cut-off point, the 100th iteration,

whichever first occurs.

Real Large Graphs: Thirteen real large graph datasets are used

in the testing (Table 5). The dataset friendster is an on-line

game network and the dataset liveJournal is an on-line com-

munity. Two people are connected by an edge if they are friends.

Both are available at SNAP.1 There are several followee/follower

networks used in the testing: kdd-2012, twitter-mpi, and wise-

2012. The dataset kdd-2012 is the 2012 KDD Cup dataset.2 The

dataset twitter-mpi is a follower network in Twitter, crawled by

MPI in 2010.3 The dataset wise-2012 is a dataset used in WISE’12

1
http://snap.stanford.edu/data

2
http://www.kddcup2012.org/c/kddcup2012-track1

3
http://twitter.mpi-sws.org/

Dataset |V | |E| |E|/|V | Size

liveJournal 4,847,571 86,220,856 17.79 547M

kdd-2012 1,944,589 100,266,751 51.56 729M

indochina-2004 7,414,866 194,109,311 26.18 1.5G

uk-2002 18,520,486 298,113,762 16.10 2.6G

wise-2012 58,655,849 265,108,370 4.52 2.9G

arabic-2005 22,744,080 639,999,458 28.14 5.3G

uk-2005 39,459,930 936,364,282 23.73 8.1G

it-2004 41,291,594 1,150,725,436 27.87 9.9G

twitter-2010 41,652,230 1,468,365,182 35.25 13.0G

friendster 65,608,366 1,806,067,135 27.53 16.0G

twitter-mpi 52,579,682 1,963,263,821 38.50 17.0G

sk-2005 50,636,154 1,949,412,601 38.50 17.0G

uk-2007-05 105,896,555 3,738,733,648 35.31 33.0G

Table 5: 13 Real Graph Datasets

Challenge contest.4 All other datasets are large social networks and

web page graphs used in different domains which can be down-

loaded from WebGraph.5 The datasets are shown in Table 5. As

shown in Table 5, the numbers of vertices of the 13 graphs are in

the range from 2 millions to 106 millions, the numbers of edges

of the 13 graphs are in the range from 86 millions to 3.7 billions,

where the average degrees are in the range of 4.52 and 51.56. The

sizes of a graph in the memory are from 547 megabytes to 33 giga-

bytes, where a graph is represented using adjacency lists. For BM,

we convert each graph into bipartite one by dividing the vertex set

into two based on the parity of vertex ID. After that the edges in

same side are removed.

7.1 When f ′(·) should be used

10
-6

10
-5

10
-4

10
-3

10
-2

5 6 7 8 9 10

re
la

.
e
rr

o
r

(i
n
 l
o
g
)

iteration

5
6
7
8
9

10

(a) Error per Iter. Varying Threshold

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

1 2 3 4 5 6 7 8 9 10
 0

 0.2

 0.4

 0.6

 0.8

 1

of iterations

rela. time
original
approx.

(b) Error Varying Iteration Length

Figure 5: PR Varying Iteration and Threshold

We perform experiments on the execution strategy discussed in

Section 5.2 first. The experiments are performed on twitter-mpi

for algorithm PR. In the Fig. 5(a), all experiments last for 10 itera-

tions, while we switch from f(·) to f ′(·) after different thresholds

ranging from 5 to 10, represented in different lines. The figure

4
http://www.wise2012.cs.ucy.ac.cy/challenge.html

5
http://law.di.unimi.it/datasets.php

1840

shows the relative error after each iteration in all these strategies.

From the figure we can clearly see although f ′(·) is expected to

be faster than f(·), it cannot reduce the error below 10−3. On the

other hand f(·) helps reducing the error to be as small as 10−5.

From the experiments, switching to f(·) is necessary.

In Fig. 5(b), we vary the total number of iterations, and use f ′(·)
in all iterations except the last one. The error of the original ap-

proach which uses f(·) in all iterations, the error of our approach,

and relative computational time of ours against the original, are

shown in the figure. From it we can observe the benefit of approxi-

mation saves about 30% to 55% computational time, with compara-

ble error in all cases, regardless the number of iterations. This con-

firms the effectiveness of the approximation in different settings.

Above two experiments reveal that the approximated f ′(·) helps

in all settings while switching back to f(·) in late iterations is nec-

essary too. Naturally there raises a question: when should we use

f ′(·) to speed up the computation and when should we use f(·)
for better accuracy? We conduct experiments for all combina-

tions of different thresholds and f ′(·)s. Here all f ′(·) are based on

sampled inputs, f ′(·) = fγ(·) where γ indicates that we sample

one message for every γ messages. In our testing, we test 5 differ-

ent f ′(·): f2(·), f3(·), f5(·), f10(·) and f20(·). Note that a function

with a larger γ will have lower accuracy and higher efficiency. In

our testing, we use 5 different degree threshold τ (cf. Section 5.2)

values: 10, 20, 30, 50, and 100, and 6 different θ values: 5, 6, 7, 8,

9, and 10. In total, there are 150 combinations.

Fig. 6 shows the relationship between efficiency (computing time)

and the effectiveness (error). The x-axis is the relative time, where

the value 1 indicates the time when PR completes using f(·) only in

10 iterations. The y-axis is the relative error comparing to the final

answer for PR using f(·) only in 10 iterations. In each sub-figure

in Fig. 6, a point represents the relationship between effectiveness

and efficiency for one of the 150 combinations.

Fig. 6(a) shows it for all 150 combinations. All dot points show a

rich spectrum of trade-offs between the computing time and the er-

ror, with the error ranging from smaller than 0.5 to about 10−8 and

the computing time ranging from 0.28 to 0.85 of the full computing

time.

Fig. 6(b) shows it for all different iteration thresholds. Here,

for each of the iteration thresholds (θ), we use a different color. It

confirms that a larger θ value leads to a larger relative error. The dot

point whose error is near 0.5 indicates that it uses a large iteration

threshold θ. In other words, it starts using the function f(·) late. We

find that the main factor of the trade-off between computing time

and error is not the timing when the function f ′(·) is replaced with

the original f(·). In Fig. 6(b), for the blue squares, that represents

θ = 5, the error ranges from 10−3 to about 10−8, and for the black

points, that represents t = 10, which means f(·) is never used, the

error ranges from 10−1 to 10−5. In summary, switching back to

the original function f(·) does reduce the error, but only in the last

iterations. This discovery confirms our discussion.

Fig. 6(c) shows it for different message samplings. Here, for

each of the approximate function fγ(·), we use a different color.

As shown in Fig. 6(c), the coarse function trades accuracy for bet-

ter computing time. For example, consider f2(·), which is repre-

sented by blue squares. There are more blue squares at the right

and the bottom side, which means more computing time and better

accuracy.

Fig. 6(d) shows it for different degree thresholds. Here, for each

of the degree threshold τ , we use a different color. In Fig. 6(d),

a larger degree threshold eliminates more chances to use an ap-

proximation function f ′(·), but brings better accuracy. The purple

diamonds representing the largest degree threshold τ = 100 are at

the most bottom and the most right part, which means it achieves

the best accuracy at the expense of low efficiency.

Based on our observation, if the number of iterations to be exe-

cuted is determined before the execution, we suggest the threshold

θ to be 95% of the total iterations l or l - 3 iterations, depending

on which one is smaller. On the other hand, if the condition of

termination is dynamically determined during the execution or the

execution is not in terms of BSP, we suggest appending an addi-

tional phase using f(·), after the termination condition is triggered

using f ′(·). The number of workload using f(·) could be restricted

as no more than 5% of the main phase. All following experiments

follow this setting.

It is also worth noting that our approach is not parameter sensi-

tive. Under reasonable parameters, in the example θ 6= 10, γ 6= 2
and γ ≤ τ , our approach always delivers relative error less than

0.4% and computing time less than 80%. The users can enjoy the

benefit brought by our system without fine tuning the parameters.

7.2 The Effectiveness and Efficiency
We conducted the experiments using 8 graph algorithms: BFS

(Breadth-First Search), BM (Bipartite Matching), CC (Weak Con-

nected Components), D (Graph Diameter), KM (k-Means), PR

(Page Rank), SSSP (Single Source Shortest Path), and TC (Tri-

angle Counting). We explore the relationship between efficiency

(time) and the effectiveness (error) behind the 8 graph algorithms.

We show the results in Fig. 7. Like Fig. 6, the x-axis is the relative

time, where the value 1 indicates the time when a graph algorithm

completes using f(·), and the y-axis is the relative error in log scale

using f ′(·), comparing to the final answer for the same graph algo-

rithm using f(·). The sizes of the dot points are proportional to the

size of datasets they represent. For some algorithms, the relative

error can be less than 10−4, and they are depicted as 10−4 for bet-

ter illustration. In this testing, when sampling is used, the degree

threshold (τ) is 30, and the approximate function f ′(·) is f5(·).
In general, different graph algorithms are different in terms of ef-

ficiency. We say a graph algorithm performs well if we can find

f ′(·) that can possibly lead to low error and less computing time.

Based on the experiment results, we discuss some factors that lead

to better efficiency.

The Continuous Function f(·): Continuous functions are sup-

posed to have a small inherited variance. Therefore, their approxi-

mation functions f ′(·) are likely to be smooth. On the other hand,

for discrete functions, for example the functions that have both in-

put and output as binary values, the inherited variances can be con-

siderably large. It is difficult to synthesize a function f ′(·) to ap-

proximate f(·) that is close to f(·) as well as being smooth. If f ′(·)
is away from f(·), the error is not beyond the expectation. If f ′(·)
is not smooth enough, the small error in faulty input may lead to

a larger output error, compared to the smooth approximation func-

tions. Therefore, in both cases, a larger error is expected, which is

observed in algorithm BM.

The Steady Working Windows: We denote the actively work-

ing vertices (sending out messages) as a working window in a spe-

cific iteration. All the algorithms that employ the same or similar

working windows through the computation, are likely to find the

approximation with the smaller error. For example, the BM al-

gorithm gradually matches unmatched vertices and removes them

from the computation process. On the other hand the working win-

dows of PR and TC always include all the vertices. BM does

not perform well comparing to PR and TC. Our explanation for

this phenomenon is, during approximation computation, with f ′(·),
vertices can make wrong judgment either by the quality of f ′(·) or

1841

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) For All 150 Combinations

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5
6
7
8
9

10

(b) Varying Iteration Thresholds θ

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2
3
5

10
20

(c) Varying Message Sampling fγ(·)

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10
20
30
50

100

(d) Varying Degree Thresholds τ

Figure 6: Effectiveness vs Efficiency (x-axis is realtive computation time, y-axis is relative error (in log scale), better view in color)

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.2 0.4 0.6 0.8 1

(a) BFS

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.2 0.4 0.6 0.8 1

(b) BM

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.2 0.4 0.6 0.8 1

(c) CC

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.2 0.4 0.6 0.8 1

(d) D

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.2 0.4 0.6 0.8 1

(e) KM

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.2 0.4 0.6 0.8 1

(f) PR

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.2 0.4 0.6 0.8 1

(g) SSSP

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.2 0.4 0.6 0.8 1

(h) TC

Figure 7: Performance in Eight Graph Algorithms (x-axis is relative computation time, y-axis is relative error (in log scale))

by incorrect messages Ii,t. Accordingly, it will deliver the wrong

decision as its outgoing messages to other vertices in the next itera-

tion. If all the vertices are always actively involved in the computa-

tion, it still has a chance to correct wrong judgments. On the other

hand, wrong messages are delivered and the errors introduced be-

come the permanent, which has the negative impact on the overall

accuracy.

The Total Workload: The algorithms with larger workload are

easily approximated compared to the light-weighted ones. This

is not hard to understand, because a larger workload brings more

chances for approximation and covers the overhead caused in ap-

proximation process. In Fig. 7, the points that are near the top of

each sub-figures are small points with higher relative errors.

Most of our experiment results’ error is within 1% compared

to the original result. The accuracy is high by using the auto-

matically synthesized functions. As a comparison, for example,

the proven approximation bound MINIMUM-DOMINATING-SET is

O
(

1 + ln(|V |)
)

[21] and the approximation bound for MINIMUM-

VERTEX-COVER is somewhere near 2 [18]. For the processing

time, some of our results fall in the range larger than 80% compu-

tation time compared to the original one. It is hard to judge whether

users are satisfied, since the value by saving the computation time

heavily depends on the users’ preference. In following, we will

show the prediction of computation time can be accurate. In other

words, before performing actual approximation computation, we

can give users some indicator about the expected computation time.

7.3 Async. and Sync. Computing

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 5*10
4

10
5

1.5*10
5

re
la

.
e
rr

o
r

(i
n
 l
o
g
)

time (ms)

Original
Approximated

(a) PR in Async.

10
-3

10
-2

10
-1

10
0

0 10
6

2*10
6

3*10
6

4*10
6

re
la

.
e
rr

o
r

(i
n
 l
o
g
)

time (ms)

Original
Approximated

(b) PR in Sync.

Figure 8: PR in Asynchronized and Synchronized Computing

Despite the BSP computing paradigm, we also conducted exper-

iments on asynchronized and synchronized computing. We report

the results on PR in Fig. 8. Experiments on other algorithms show

similar trends. In both synchronized and asynchronized computing,

our proposed approximation solution delivers an approximated so-

lution quicker than the unapproximated one. However the result

accuracy after sufficient time, is less accurate than the unapproxi-

mated one.

7.4 Prediction Error/Time on Large Graphs
In Section 5.3, we introduce the techniques to evaluate the per-

formance of the automatically synthesized functions using graph

sampling. We conduct the experiments by sampling each graph.

We take a sample from each graph with 0.1% of the graph ver-

tices. We are aware that a larger sample size leads to marginal

better sampling quality, but the time spending on sampling and ex-

ecuting f ′(·) hurts. A sample graph is an induced subgraph of G

1842

10
-1

10
0

10
-1

10
0

p
re

d
ic

te
d
 (

in
 l
o
g
)

actual (in log)

(a) Predict Time Using Average

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

p
re

d
ic

te
d
 (

in
 l
o
g
)

actual (in log)

(b) Predict Error Using Average

Figure 9: Predict the Execution Time and Error

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
3

10
4

10
5

10
6

10
7

10
8

a
p
p
ro

x
.
ti
m

e
 (

in
 l
o
g
)

original time (in log)

(a) Comp. of Approx. and Orig. Time

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

s
a
m

p
le

 t
im

e
 (

in
 l
o
g
)

approx. time (in log)

(b) Comp. of Approx. and Sample
Time

Figure 10: Sample time

using the vertices sampled. We run both the original UDF (or the

function f(·)) and our automatically synthesized function f ′(·) on

the samples, and measure the relatively error and relatively compu-

tational time. We predicate the relative error and relative time on

the large graph. The results are shown in Fig. 9(a) and 9(b). From

the figures we observe the prediction on the computation time is

accurate however the error seems not predictable.

On the other hand, we measure the rank of all approximation

methods for each graph algorithm. Our methods accurately pre-

dicted all ranks. Combining all of these, we believe our auto-

approximation is easy to use.

• Our approach is parameter insensitive. As shown in Section

7.1, our approach delivers less than 0.4% error and saves at

least 20% of computing time under all non-extreme param-

eters. All the results in Section 7.2 are conducted in these

parameters without manual tuning.

• The prediction of computing time and the rank of error is ac-

curate. A user can choose his/her desired trade-off between

computing time and error.

We also measured the time cost of sampling. In Fig. 10(a) we

show the approximation computing time against the original com-

puting time. In Fig. 10(b) we show the approximation computing

time against the sample time. The figure clearly indicates the sam-

ple time is up to three order of magnitudes smaller than the approx-

imation computing time, and the approximation computing time is

up to one order of magnitudes less than the original one.

8. RELATED WORKS

Graph Algorithm: Numerous graph algorithms have been pro-

posed to speed up certain graph problems, either in the perspective

of asymptotic bound or in the perspective of performance [12, 2].

All of them need careful design, and/or extensive testing to tune

parameters. Our system targets on automatically synthesized faster

algorithms. It brings considerable performance improvement, al-

though it may not be competitive with the speed up brought by

well-designed specific algorithms. In the literature, many approxi-

mation algorithms have been proposed. Since we do not attempt to

design an approximate algorithm per se, we do not discuss approx-

imate algorithms design [15].

Adaptive Query Processing: For evaluating SQL queries, RDBMSs

are capable of altering their execution plan according to the in-

formation collected during the SQL processing. The technique is

called Adaptive Query Processing [11]. It is flexible to save com-

putation time, but it does not trade for accuracy. The computing

time is still lower bounded by the inherent complexities.

Programming Analysis: Probabilistic computing is studied on in-

correct hardware and/or software [26]. The frontier research mostly

focuses on the rather low-level system perspective. For example,

how relaxed concurrency control will affect the correctness of a

program [25] and how error of embedded hardware affects the per-

formance of a particular data structure [5]. Researchers in the pro-

gramming language area work on these problems using program

verification, automatic reasoning, program synthesis, by analyzing

program codes to seek the chance of accuracy-aware program trans-

formation. Our work leverages their intuition and investigates the

automatic approximation on the higher level graph algorithms.

Graph Sampling: In the literature, graph sampling approaches

sample a small graph G′ from G by preserving some properties

of G, such as the degree distribution, betweenness centrality, graph

density, diameter, clustering coefficient [20]. However, these graph

samplers do not work well in our problem setting, because our

problem involves an unknown function f(·) to be approximated.

We are not aware of any graph sampling method that can be ap-

plied to complex graph problem yet.

Approximation by Sampling: Recent there are some research

works compute the approximated results by sampling the data. Such

approaches can be found in MapReduce Online [9], EARL [28] and

BlinkDB [1]. The data sampling approaches have their limitation,

because they can only deal with certain simple graph problems, as

discussed previously.

9. CONCLUSION AND FUTURE WORK
This paper is the first step towards automatically approximat-

ing graph algorithms. Our approach is a systematic approach and

is independent from the approximate algorithms designed to han-

dle some specific graph problems. We can handle any graph al-

gorithms on any graph systems (BSP, synchronized, and asynchro-

nized). With our approach, we can assist developers to design a

new algorithm by first exploring the possible results over a straight-

forward algorithm on some graph system, and we can also help to

speed up the computing time for some well-designed algorithms

in some graph system if they have difficulties dealing with some

unexpected graphs. We conduct extensive experimental studies to

confirm our findings. The approach we proposed opens a new di-

rection to beat clever algorithms using more data.

There are several technical problems left unsolved. First, how to

accurately assess the performance of an approximate solution. In

our experiments, the prediction of error is shown to be less ideal,

because the relationship between the error and the graph size is

not fully understood. We will seek advanced machine learning

techniques to improve the prediction accuracy and graph sampling

approaches which can preserve the information related to the er-

ror. Second, the graph synthesis techniques have much space for

improvement. Modern program manipulating techniques like pro-

gram reasoning can be adapted to solve the problem. Third, how to

design a mechanism for users to give some hints for their UDFs, in

order for our graph system to approximate the UDF.

1843

Acknowledgment

The work was supported by grant of the Research Grants Council

of the Hong Kong SAR, China No. 418512.

10. REFERENCES

[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and
I. Stoica. Blinkdb: Queries with bounded errors and bounded
response times on very large data. EuroSys, pp. 29–42, 2013.

[2] C. C. Aggarwal and H. Wang, editors. Managing and Mining Graph

Data, volume 40 of Advances in Database Systems. Springer, 2010.

[3] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan.
Linkbench: A database benchmark based on the facebook social
graph. SIGMOD, pp. 1185–1196, 2013.

[4] Y. Bu, V. R. Borkar, M. J. Carey, J. Rosen, N. Polyzotis, T. Condie,
M. Weimer, and R. Ramakrishnan. Scaling datalog for machine
learning on big data. CoRR, abs/1203.0160, 2012.

[5] L. N. Chakrapani, P. Korkmaz, B. E. S. Akgul, and K. V. Palem.
Probabilistic system-on-a-chip architectures. ACM Trans. Des.

Autom. Electron. Syst., 12(3):29:1–29:28, May 2008.

[6] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity and
robustness of programs. Commun. ACM, 55(8):107–115, Aug. 2012.

[7] R. Chen, X. Weng, B. He, and M. Yang. Large graph processing in
the cloud. SIGMOD, pp. 1123–1126, 2010.

[8] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law
distributions in empirical data. SIAM Rev., 51(4):661–703, Nov.
2009.

[9] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,
and R. Sears. MapReduce Online. NSDI, pp. 21–21, 2010.

[10] M. Curtiss, I. Becker, T. Bosman, S. Doroshenko, L. Grijincu,
T. Jackson, S. Kunnatur, S. Lassen, P. Pronin, S. Sankar, G. Shen,
G. Woss, C. Yang, and N. Zhang. Unicorn: A system for searching
the social graph. Proc. VLDB Endow., 6(11):1150–1161, Aug. 2013.

[11] A. Deshpande, Z. Ives, and V. Raman. Adaptive query processing.
Foundations and Trends in Databases, 1(1), 2007.

[12] R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts

in mathematics. Springer, 2012.

[13] P. Domingos. A few useful things to know about machine learning.
Commun. ACM, 55(10):78–87, Oct. 2012.

[14] W. Feller. An Introduction to Probability Theory and Its

Applications, volume 1. Wiley, January 1968.

[15] M. R. Garey and D. S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
1979.

[16] M. N. Garofalakis and P. B. Gibbon. Approximate query processing:
Taming the terabytes. VLDB, page 725, 2001.

[17] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on natural
graphs. OSDI, pp. 17–30, 2012.

[18] E. Halperin. Improved approximation algorithms for the vertex cover
problem in graphs and hypergraphs. SIAM Journal on Computing,
31(5):1608–1623, 2002.

[19] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-marl: A dsl for
easy and efficient graph analysis. ASPLOS XVII, pp. 349–362, 2012.

[20] P. Hu and W. C. Lau. A survey and taxonomy of graph sampling.
CoRR, abs/1308.5865, 2013.

[21] D. S. Johnson. Approximation algorithms for combinatorial
problems. Journal of Computer and System Sciences, 9(3):256 – 278,
1974.

[22] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos. Gbase: An
efficient analysis platform for large graphs. The VLDB Journal,
21(5):637–650, Oct. 2012.

[23] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale
graph mining system implementation and observations. ICDM, pp.
229–238, 2009.

[24] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis. Mizan: A system for dynamic load balancing in large-scale
graph processing. EuroSys, pp. 169–182, 2013.

[25] C. Kirsch, M. Lippautz, and H. Payer. Fast and scalable, lock-free
k-fifo queues. In V. Malyshkin, editor, Parallel Computing

Technologies, volume 7979 of Lecture Notes in Computer Science,
pp. 208–223. Springer Berlin Heidelberg, 2013.

[26] C. M. Kirsch and H. Payer. Incorrect systems: It’s not the problem,
it’s the solution. DAC, pp. 913–917, 2012.

[27] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale
graph computation on just a pc. OSDI, pp. 31–46, 2012.

[28] N. Laptev, K. Zeng, and C. Zaniolo. Early accurate results for
advanced analytics on mapreduce. Proc. VLDB Endow.,
5(10):1028–1039, 2012.

[29] L. Lovász. Random walks on graphs: A survey, 1993.

[30] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. Distributed graphlab: A framework for machine learning
and data mining in the cloud. Proc. VLDB Endow., 5(8):716–727,
Apr. 2012.

[31] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A system for large-scale graph
processing. SIGMOD, pp. 135–146, 2010.

[32] Aurelius Inc.
http://thinkaurelius.github.io/faunus/.

[33] Linked Data Benchmark Council. http://ldbc.eu/.

[34] The Apache Software Foundation.
http://giraph.apache.org.

[35] The Apache Software Foundation. http://hama.apache.org.

[36] Twitter Inc. https://twitter.com/cassovary.

[37] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi. Naiad: A timely dataflow system. SOSP, pp. 439–455,
2013.

[38] J. Nelson, B. Myers, A. H. Hunter, P. Briggs, L. Ceze, C. Ebeling,
D. Grossman, S. Kahan, and M. Oskin. Crunching large graphs with
commodity processors. HotPar, pp. 10–10, 2011.

[39] A. Neumaier. Introduction to Numerical Analysis. Cambridge
University Press, 2001.

[40] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure
for graph analytics. SOSP, pp. 456–471, 2013.

[41] A. D. Popescu, A. Balmin, V. Ercegovac, and A. Ailamaki.
PREDIcT: Towards Predicting the Runtime of Large Scale Iterative
Analytics. Proc. VLDB Endow., 6(14):1678–1689, Sept. 2013.

[42] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, and
M. Haridasan. Managing large graphs on multi-cores with graph
awareness. USENIX ATC, pp. 4–4, 2012.

[43] H. G. Rice. Classes of recursively enumerable sets and their decision
problems. Trans. Amer. Math. Soc., 74:358–366, 1953.

[44] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream: Edge-centric
graph processing using streaming partitions. SOSP, pp. 472–488,
2013.

[45] S. Salihoglu and J. Widom. Gps: A graph processing system.
SSDBM, pp. 1–12, 2013.

[46] M. Sarwat, S. Elnikety, Y. He, and G. Kliot. Horton: Online query
execution engine for large distributed graphs. ICDE, pp. 1289–1292,
2012.

[47] B. Shao, H. Wang, and Y. Li. Trinity: A distributed graph engine on a
memory cloud. SIGMOD, pp. 505–516, 2013.

[48] J. Shun and G. E. Blelloch. Ligra: A lightweight graph processing
framework for shared memory. PPoPP, pp. 135–146, 2013.

[49] J. Surowiecki. The Wisdom of Crowds. Anchor, 2005.

[50] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson.
From “think like a vertex ” to “think like a graph ”. Proc. VLDB

Endow., 7(3):193–204, 2013.

[51] G. Wang, W. Xie, A. Demers, and J. Gehrke. Asynchronous
large-scale graph processing made easy. CIDR, 2013.

[52] R. Xin, J. Gonzalez, M. Franklin, and I. Stoica. Graphx: A resilient
distributed graph system on spark. CIDR, 2013.

[53] Z. Yang, J. Xue, Z. Qu, S. Hou, and Y. Dai. Seraph: An efficient
system for parallel processing on a shared graph. LADIS, 2013.

[54] J. Zhong and B. He. Medusa: Simplified graph processing on gpus.
IEEE Transactions on Parallel and Distributed Systems,
25(6):1543–1552, 2014.

1844

