
TransactiveDB: Tapping into Collective Human Memories

Michele Catasta†, Alberto Tonon*, Djellel Eddine Difallah*, Gianluca Demartini*,
Karl Aberer†, and Philippe Cudre-Mauroux*

†EPFL—Switzerland *eXascale Infolab, University of Fribourg—Switzerland
(firstname.lastname)@epfl.ch (firstname.lastname)@unifr.ch

ABSTRACT
Database Management Systems (DBMSs) have been
rapidly evolving in the recent years, exploring ways to
store multi-structured data or to involve human processes
during query execution. In this paper, we outline a future
avenue for DBMSs supporting transactive memory queries
that can only be answered by a collection of individuals
connected through a given interaction graph. We present
TransactiveDB and its ecosystem, which allow users to pose
queries in order to reconstruct collective human memories.
We describe a set of new transactive operators including
TUnion, TFill, TJoin, and TProjection. We also describe
how TransactiveDB leverages transactive operators—by
mixing query execution, social network analysis and human
computation—in order to effectively and efficiently tap into
the memories of all targeted users.

1. INTRODUCTION
Humans can store, process—and eventually forget—

personal memories on their own, but also collectively.
The notion of transactive memory [6] was established
almost 30 years ago to denote the capacity of groups of
individuals to collectively store and retrieve knowledge.
Classical examples of transactive systems are older couples
or families living together. Even if an individual in the
group cannot remember a specific fact, he/she will often
have a systematic way of retrieving the desired piece of
information (e.g., by asking a specific individual from the
group).

Recently, crowdsourcing has been used to complement
classical database systems by leveraging human intelligence
at scale [3]. While crowdsourcing DB systems can answer
queries that purely automated systems cannot, they are still
for the most part confined to relatively simple and generic
tasks such as translating sentences or finding information on
the Web.

In this paper, we present our vision for TransactiveDB: a
futuristic system leveraging personal memories collectively
and automatically in order to answer queries whose results
are not necessarily available in digital form, but are rather

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 14
Copyright 2014 VLDB Endowment 2150-8097/14/10.

in the minds of relevant individuals. In Hippocampus [1], we
presented a first example of transactive search, which was
able to reconstruct a shared memory more effectively than
either machine-based or crowdsourcing-based approaches.
In the following, we outline a generic architecture for a com-
plete transactive DB system combining distributed query
execution, human intelligence, and social interactions to sat-
isfy a novel class of information needs.

TransactiveDB works as a Peer Data Management Sys-
tem [4] in which each user represents an autonomous sys-
tem combining relational tables (i.e., digital information)
and human memories (i.e., personal information). Our sys-
tem targets the union of digital and personal information
across the network of nodes. Both sources of information
are fundamental to answer transactive queries expressing
information needs that can only be satisfied by tapping into
certain group memories, e.g., “Who is the person on the left
of this picture that I took during the eXascale lab retreat in
Anzere, Switzerland on Jan 30th, 2014?”

The rest of this paper is structured as follows. We start
below by describing the rational behind our system. Sec-
tion 3 presents an overview of TransactiveDB’s architecture.
We describe the social graph supporting TransactiveDB’s
query execution in section 4 and the new set of transactive
operators that we introduce in section 5. Finally, we lay out
a research agenda for TransactiveDB in Section 6.

2. SYSTEM RATIONALE
“What was the name of that amazing drink I
ordered yesterday at the hipster bar?”

There are many reasons why a person might wish to ask such
a question; more importantly in our context, not everybody
can provide an answer to it. That question actually trans-
lates into a transactive query that can neither be answered
by querying the web, nor by asking arbitrary Internet users
via crowdsourcing. In order to give a precise answer to that
query, one has to have interacted with the requester in the
context of that query, meaning that one needs to have been
with him at the hipster bar (direct interaction) or, at least,
have heard about that event (indirect interaction). This
question is an example of a transactive fill query, a particular
kind of transactive query supported by TransactiveDB that
is processed iteratively and collaboratively by exploiting the
interaction graph, i.e, the graph representing the relations
among all people involved in the event the query refers to (a
more detailed description of the interaction graph is given
below in Section 4). In that case, the selection query targets
one particular attribute (the name of a drink), but it might

1977



human
memories

U
D
F

Local
relations

input 
(query description, crowdsourcing data, etc.)

output 
(new tuples, target nodes for next iteration, etc.)

Transactive
Memory
Peer

Peer

1

TransactiveDB

Peer

2

Peer

5
Peer

4

Peer

3

interaction graph #1 interaction graph #2 social graph

information
need #1

seed
node

Figure 1: The architecture of TransactiveDB. In the depicted
scenario, Peer3 has an information need (#1), which can be satis-
fied by the Transactive Memory peers belonging to the interaction
graph #1. As such, Peer3 exploits its social network connections
to discover that Peer2 can behave as the seed node for the query
(i.e., Peer2 can route the query to all the other peers involved in
the relevant interaction graph).

also involve a second transactive element in order to deter-
mine the selection condition (i.e., to determine the name of
the hipster bar).

TransactiveDB is also able to process further types of
transactive queries such as transactive joins for matching
entities, or transactive unions for completing missing data
(see below Section 5). TransactiveDB could also be lever-
aged to reconstruct the transactive memory of an enterprise.
In that case, employees could for example programmatically
tap into the memories of their colleagues who participated
in a given meeting in order to recover detailed events or
decisions taken during the meeting.

A transactive DBMS sets itself apart from a crowd-
powered DBMS in the way participants are selected and
incentivised, as well as in the way queries are collectively
and iteratively executed. Where crowdsourcing employs
a large number of anonymous, paid workers, our system
leverages the acquaintances of the query requester to
iteratively augment a shared corpus of information, i.e.,
the collective memory relating to the query. Subqueries
are dispatched to the most suitable individuals depending
on the interaction context (extending in that sense our
previous push-crowdsourcing approach [2]). Nonetheless,
we leverage classical crowdsourcing techniques to execute
generic operators that do not require any specific knowledge
about the requester, e.g., “Are these two photos depicting
the same person?”.

3. OVERALL ARCHITECTURE
We envision a decentralized data management system

that exposes memories of individuals or groups in order
to answer transactive queries. A simplified architecture
of TransactiveDB is depicted in Figure 1. The first key
component of our system is the Transactive Memory Peer
(a node hereafter), mainly composed of the memory of a
person and a physical store onto which particular memories
gets transcribed over time.

The physical store is a classical database system running
for example in the cloud or on a personal device of the user.
All the DBMS components are transactive-enabled, in the
sense that they can execute transactive queries; in addition,
these systems can also query the crowd via generic crowd op-
erators (such as those defined in CrowdDB [3]). The memory
transcription process can be triggered by two different types
of events i) a voluntary act of documenting an experience,
e.g., “record the following grocery list”, or ii) the reception
of a query coming from the user or from a different node e.g.:
“How much did last night meal at the restaurant cost?”.

The transcribed data is organized into relational tables
that users create following a standard schema definition.
With the proper security and privacy mechanisms (e.g.,
access control credentials), the data can be exposed and
queried by trusted nodes in the system.

The second key element of our architecture is the inter-
action graph connecting the different nodes participating in
query execution. The interaction graph is a subset of the un-
derlying social network connecting the different end-users.
The exact set of nodes and edges constituting the interac-
tion graph is progressively elicited as the transactive query
gets executed. Different queries can hence generate different
interaction subgraphs (see Section 4).

Finally, query execution in TransactiveDB is iterative, as
it runs until a convergence criterion has been reached or
the budget used to operate the transactive memory system
is exhausted. At each step, the transactive memory peers
are first selected and contacted based on the information
contained in the interaction graph. Each Transactive Peer
that the system reaches tries to retrieve the requested data
using its local store. In case the information retrieved is
deemed acceptable, the data is directly returned to the re-
quester. Otherwise, the system generates a human-readable
representation of the query, to which the local user can an-
swer by filling out a Web-based form with information from
his/her memory. At this step, missing data values can also
be gathered trough conventional crowdsourcing (e.g., emails
of newly discovered participants). Finally, the results are
post-processed and merged together and the peers selected
for the following iteration are selected.

4. LEVERAGING HUMAN MEMORIES
THROUGH INTERACTIONS

TransactiveDB aims at reconstructing and gathering dis-
tributed information stored as human memories, be it digi-
tally documented or dwelling inside the individuals’ brains.
Reconstructing such memories a posteriori requires some a
priori exposure to the required information as well as ex-
plicit social interactions to recompose the missing pieces.
Social networks are today the canonical way of representing
social interactions in a digital form. In fact, the existence
of multiple social networks (e.g., professional, friendship, or
celebrity networks) is a manifestation of the diverse social
interactions humans nurture. We define a social graph as
the implicit or explicit graph encompassing the different in-
teractions people have. Since a transactive query typically
requires some very specific knowledge, it is only aimed at a
subset of the social graph, called the interaction graph (see
below and Figure 2).

1978



4.1 Interaction Graph
In our setting, collective memories are associated to a spe-

cific context where participants interact with each other,
forming what we call an Interaction Graph. This notion is
key to our system as it is created, expanded, and leveraged
during query execution. To further illustrate this concept,
we take the example of enumerating all participants of a
conference; the interaction relates in that case to individu-
als participating to the particular conference; the interaction
graph derived from this is a directed graph where the nodes
correspond to attendees, and the edges are memories relat-
ing attendee A to attendee B. In a sense, interaction graphs
are overlays sitting on top of social graphs.

4.2 Graph Creation
For queries relating to an interaction not yet observed

in the system, TransactiveDB tries to discover the implicit
interactions connecting the nodes by means of connection
elicitation and query routing. Practically, this requires re-
cursively asking current nodes about further potential con-
nections, and selectively routing the query to those nodes
(old or new) that are the most susceptible of contributing
new connections.

4.3 Graph Seed Selection
If the query requester did not take part in the interaction,

the system engages in a seed discovery to bootstrap the
interaction graph by iteratively exploring the social graph
(e.g., similarly to the well-known Milgram experiment [5]).
The seed is therefore defined as the first person whom the
system identifies and who has taken part in the requested
interaction. The quality of the seed plays an essential role in
the efficiency of the subsequent transactional queries. For in-
stance, selecting a potential “hub”, i.e., a person with many
outgoing edges to further nodes in the interaction graph, is
preferable to selecting more isolated nodes (in that sense,
selecting the right seed participant for our conference at-
tendance example might require ranking the potential seeds
w.r.t. their connections in that field, their age, or their level
of commitment to the conference.)

4.4 Leveraging the Interaction Graph
Interaction graphs are often created as new transactive

queries arrive. As time goes by, however, queries relating
to the same or similar interaction patterns may surface.
TransactiveDB tries to reuse previously elicited interaction
graphs for such queries. Considering our previous example,
imagine a follow-up query asking for the “list of attendees
of the benchmarking workshop that was co-located with the
main conference”. In this case, the persons holding the in-
formation are already listed in the system thanks to the
previous transactive query. This new query can hence lever-
age (at least part of) the interaction graph built for the
preceding query.

5. TRANSACTIVE OPERATORS
TransactiveDB borrows from the standard relational al-

gebra for basic operations. It uses operators defined by
CrowdDB [3] for crowd-enabled queries. It also supports
two new basic transactive operators, namely TUnion and
TFill, and two derivate, TJoin, and TProjection, in order to
handle transactive queries. It is up to the end-user provid-
ing the query to specify whether to use the crowdsourcing

operations or the transactive memory ones in a declarative
fashion. The last parameter of each transactive memory
operator is the interaction graph to use as a starting point
of its execution; if the input interaction graph is empty,
TransactiveDB exploits the seed discovery techniques previ-
ously described in Section 4 to bootstrap it. In every case,
the result is a pair (R,G) where R is a relation and G is the
graph used to obtain the requested data from the transac-
tive memory. We leave as future research deciding how to
select what data (columns) to show to the peers in order to
obtain the needed information, also according to the privacy
settings of the user issuing the query.

All operators are implemented as User Defined Functions
(UDFs). Since the system may iteratively interact with its
users in order to get missing information, a key focus we
take into account is human-readable information. In that
sense, tables, attributes and queries should all carry enough
textual information to be self-explanatory.

TUnion. The TUnion operator (T∪) takes a relation R and
a starting interaction graph G as input and returns a new
relation R′ containing all the tuples in R as well as new
tuples retrieved transactively from other nodes. The exper-
iment described in [1] 1 is an application of the T∪ operator
and can be formalized by the following relational algebra
operation:

(all iswc participants,G′)← T∪(iswc participants,G),

where iswc participants is the initial relation containing a
set of participants to the ISWC conference provided by the
user who started the transactive memory experiment (no-
tice that iswc participants may be an empty relation with
a specified schema), and G is the graph composed of the
people nominated by the user who issued the transactive
query.

TFill. The TFill operator (Tf ) takes as input a relation R,
a set of attributes A of R (each featuring a human read-
able description), and a starting interaction graph G, and
exploits the transactive memory features of TransactiveDB
to fill all tuples of R with missing values in one or more of
A’s elements. For example, with the following operations
we compute all the participants of the conference that also
attended the gala dinner:

iswc w gala← all iswc participants× {?}gala
(dinner,G′′)← Tf (iswc w gala, {gala}, G′)

dinner only ← σgala=true(dinner).

With the first operation we extend the relation computed
previously with an additional column, gala, containing only
unknown boolean values (“?”). The second operation ex-
ploits Tf to obtain the missing values for the new column.
Notice that we reuse the graph G′ from the antecedent TU-
nion operation as the starting interaction graph. Finally,
in the third operation we select only the people who par-
ticipated to the gala dinner. This example suggests that
the TFill operator can be used in order to make transactive
selections of tuples.

TJoin. TFill can be used to define a join operator, TJoin
(T1), which takes as arguments two relations, R and S, a

1Reconstructing transactively the list of ISWC attendees.

1979



(a) Iterations 1 and 2 (b) Iterations 3 and 4 (c) Iterations 5, 6 and 7

Figure 2: Interaction graphs while executing two transactive queries in parallel. Colors encode the new connections elicited by the
queries, while the visualization at different iterations shows how the contributions gradually move from central to peripheral peers.

predicate p, and an interaction graph G. This operator can
be rewritten in different ways depending on the query and
the instance data, opening the door to various query op-
timization strategies; when R and S are sufficiently small
or when the interaction graph is sufficiently large, one can
rewrite T1 as Tf on R× S with p encoded as a new column
one wants to fill. In other cases, projecting on the join at-
tributes and running TFill queries to determine the values
of those attributes separately before running the join might
be more efficient.

TProjection. The TProjection operator, denoted by Tπ, is
a binary operator that takes as input a relation R and a
set of attribute A = {a1, . . . , an}. The output produced
by Tπ(R,A) is the projection of the TUnion of R onto the
attributes in A, that is,

Tπ(R,A) = πa1,...,an(T∪(R)).

We note that the order of the selection and the TUnion is
important: If the system first computes the selection, some
contextual information required by the nodes to correctly
process the transactive part of the query can be lost. For
instance, with Tπ(initial set, {email}), where initial set =
{(name1, sname1, email1), . . . , (namen, snamen, emailn)},
the system returns a list of emails from the participants of
a conference, while with T∪(πemail(initial set)) we obtain
a generic set of e-mail addresses, since the peers might not
have enough context to decide whose e-mails to contribute
in that case.

6. RESEARCH AGENDA
A number of fundamental research challenges relating to

computer science and social sciences arise in the context of
TransactiveDB.
Data Management
• Extending traditional DBMSs architectures (including

graph databases) to support the storage of transac-
tive memories and interaction graphs. This includes
new ways to model transactive data and to provide ap-
propriate indexing mechanisms. For example, it might
be necessary to provide some sort of forget functional-
ity by understanding which memories and interaction
graphs are less likely to be reused again.
• Models for Representing Context need to be de-

fined to provide users and query processing modules
with the most appropriate ways to use their data, e.g.,
to contextualize information in order for the peers to
understand a new request.

Human Computation
• Source selection techniques to determine whether

the answer could be found in the locally stored data,
on the Web, from the crowd, or from a transactive
search operation, should be devised.
• Appropriate seed selection approaches have to be

leveraged to select the first persons in a community
to approach to answer a TransactiveDB query. This
is necessary to optimize query execution and minimize
the number of iterations.

Interdisciplinary Research Areas
• Incentive mechanisms have to be created to better

exploit the relationships between the peers and the re-
quester; differently from crowdsourcing, the targeted
users are known and have some connection to the re-
quester rather than being anonymous. For example,
one may provide information because he/she knows
this could help a friend or, in an enterprise context, one
might want to provide information because a manager
is asking for it.
• As human memories are fading-out over time, novel

techniques to support human memory with appropri-
ate Memory cues have to be designed in order to
help people answer queries with the highest recall. An
example is to point out different events someone might
have attended (e.g., the conference dinner, the pa-
per sessions) in order to help him/her remember who
he/she met at a conference.

7. REFERENCES
[1] M. Catasta, A. Tonon, D. E. Difallah, G. Demartini,

K. Aberer, and P. Cudré-Mauroux. Hippocampus:
Answering Memory Queries using Transactive Search. 23rd
International Conference on World Wide Web (WWW
2014), Web Science Track, 2014.

[2] D. E. Difallah, G. Demartini, and P. Cudré-Mauroux.
Pick-a-crowd: Tell Me What You Like, and I’ll Tell You
What to Do. WWW ’13, pages 367–374, 2013.

[3] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin. CrowdDB: Answering queries with crowdsourcing.
SIGMOD ’11, pages 61–72, 2011.

[4] A. Halevy, Z. Ives, J. Madhavan, P. Mork, D. Suciu, and
I. Tatarinov. The piazza peer data management system.
Knowledge and Data Engineering, IEEE Transactions on,
16(7):787–798, July 2004.

[5] S. Milgram. The small world problem. Psychology today,
2(1):60–67, 1967.

[6] D. M. Wegner. Transactive memory: A contemporary
analysis of the group mind. In Theories of group behavior,
pages 185–208. 1987.

1980


