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ABSTRACT
With the widespread use of geo-positioning services (GPS), GPS-
based navigation systems have become ever more of an integral part
of our daily lives. GPS-based navigation systems usually suggest
multiple paths for any given pair of source and target, leaving users
perplexed when trying to select the best one among them, namely
the problem of best path selection. Too many suggested paths may
jeopardize the usability of the recommendation data, and decrease
user satisfaction. Although existing studies have already partially
relieved this problem through integrating historical traffic logs or
updating traffic conditions periodically, their solutions neglect the
potential contribution of human experience.

In this paper, we resort to crowdsourcing to ease the pain of the
best path selection. The first step of appropriately using the crowd
is to ask proper questions. For the best path selection problem,
simple questions (e.g. binary voting) over compete paths cannot be
directly applied to road networks due to their being too complex
for crowd workers. Thus, this paper makes the first contribution
by designing two types of questions, namely Routing Query (RQ)
and Binary Routing Query (BRQ), to ask the crowd to decide which
direction to take at each road intersection. Furthermore, we propose
a series of efficient algorithms to dynamically manage the questions
in order to reduce the selection hardness within a limited budget.
Finally, we compare the proposed methods against two baselines,
and the effectiveness and efficiency of our proposals are verified
by the results from simulations and experiments on a real-world
crowdsourcing platform.

1. INTRODUCTION

1.1 Alice’s Dilemma
Imagine the following scenario. Alice is unfamiliar with Hong

Kong, and needs to arrive at her new office before 9 am. Through
a GPS-equipped system, three paths are suggested from her apart-
ment to her office - taxi, bus, or subway. Taxi is convenient and
comfortable, but quite expensive; while bus and subway are fairly
affordable, but usually slow and crowded. Alice faces the same
problem every weekday - ‘which path should I pick today?’
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Alice’s dilemma represents a very practical problem - how to
find the best path from a number of suggestions. Ideally, when the
cost of each edge can be perfectly evaluated with a static value,
then the ‘best path’ is simply the ‘shortest path’ over a determin-
istic graph, which has been adequately studied in many existing
works. However, in many emerging applications, the cost of a path
may be influenced by numerous complex factors that are very dif-
ficult to quantitatively model. For the example of Alice taking a
taxi, the cost of a section of a road may be affected by the traf-
fic conditions, speed limitations and toll charges, which are time-
dependent factors and difficult to evaluate. Given this situation,
many systems consider the paths preferred by humans (e.g. experi-
enced drivers) [6,18], and produce not just one best path, but rather
a set of paths. Each suggested path has its own merits, and it would
be unwise to simply ignore any of them.

However, such a setting raises another issue. Users encounter a
problem termed ‘Painful Options’ [15] - too many alternatives may
have an adverse effect on the satisfaction of users, since exercising
options is usually associated with additional cost.

1.2 Candidate Paths - An Entropy-based Mea-
surement

To study and ease the pain of selection, we first need to design
a measurement to quantify the hardness of path selection. We con-
sider the best path as a discrete random variable defined over the
recommended set of paths, and use the Shannon entropy to measure
the selection hardness. The characteristics of entropy are consistent
with the rationale of selection hardness. First, for a fixed number
of recommended paths, it is easy for users to choose when the dis-
tribution of the best path is skewed, which means the associated
entropy is low; if it is close to a uniform distribution, its entropy is
high. For example, let A and B be two recommended paths, with
probabilities Pr(A) and Pr(B) of being the best choice, respec-
tively. Then users would prefer ‘Pr(A) = 0.9, P r(B) = 0.1’
over ‘Pr(A) = 0.5, P r(B) = 0.5’. Second, additional candi-
dates tend to (not strictly) increase the hardness of selection, which
is also a nature captured by the entropy. Following the above ex-
ample, let C be another recommended path with the probability
Pr(C), then users are happier with ‘Pr(A) = 0.5, P r(B) = 0.5’
than ‘Pr(A) = 1/3, P r(B) = 1/3, P r(C) = 1/3’. Third, when
there is only one option, the entropy is equal to zero.

One may wonder how to obtain the exact probability distribution
for each path. In fact, a critical issue in any system that manages
uncertainty is whether we have a reliable source of probabilities.
Whereas obtaining reliable probabilities for our system is one of the
most interesting areas for future research, there is quite a bit to build
on. For a routing system integrated with different recommendation
algorithms, it is possible to train and test the algorithms on a large
number of queries such that each algorithm is given a probability
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based on its performance statistics. In the case where the recom-
mendation relies mainly on large amounts of historical trajectory
data [6, 18], the distribution can easily be inferred by mining the
frequent paths chosen by experienced drivers. For personalized ap-
plications, it is also reasonable to allow users to configure the distri-
bution, which reflects his or her personal preferences [17]. Clearly,
it would be a difficult task for an end-user to pick the best path from
the suggested ones. This problem may be especially severe when
the number of candidate paths is large. Inspired by the emerging
concept of crowdsourcing for various intrinsic human tasks, we re-
sort to the crowd to facilitate the selection.

1.3 Role of the Crowd
The first task to utilize the crowd is to design a proper worker

interface - we need to determine which type of questions should be
posted to the crowd. This is typically referred to as HIT (Human In-
telligent Task) design. It is well-known that crowdsourcing works
best when tasks can be broken down into very simple pieces [24].
A complete path, which usually contains hundreds of vertices and
edges, may be too complex for a crowd. In fact, we conducted an
experiment by asking the crowd to evaluate complete paths, but nei-
ther the latency nor the accuracy is satisfactory. On the other hand,
asking open-ended questions is not recommended for a crowd, be-
cause it may be difficult to integrate multiple suggestions of het-
erogeneous semantics. As a result, we propose to ask the crowd
questions regarding directions of an intersection, namely Routing
Query (RQ). Each RQ consists of a given vertex vin, a set of ver-
tices D = {v1, v2, ..., v|D|}, and a target t, such that ∀vi ∈ D,
vi is any consecutive vertex of vin in one of the suggested paths.
Intuitively,D indicates the possible directions moving from vin to-
wards target t, and the crowd is to choose the best one among them.

As shown in the upper part of Table 1, there are four recom-
mended paths from the source s to the target t - P1, P2, P3 and P4,
each of which is associated with its probability of being the best
path. Figure 1 demonstrates the graph containing them. We as-
sume s is HKUST and t is HKU, v1, v2 and v3 are Hang Hau, Choi
Hung and Kowloon Bay respectively, then a routing query could be
“Which direction should I go from HKUST(s) to HKU(t), Hang
Hau (v1), Choi Hung (v2) or Kowloon Bay (v3)?”.

Suppose the answer from the crowd is v3 since both v1 and v2 are
usually congested. As indicated in Table 1, P1 and P2 go through
v1 and v2 respectively, hereby can be ruled out. Accordingly, both
P3 and P4 have a 50% probability of being the best path, so that
selecting the path becomes less difficult for the user. In this paper,
we propose algorithms that automatically select RQs and interact
with the crowd. So the crowd would be performing tasks in the
back-end, and users do not need to be involved with issuing tasks.

One concern with the crowd is the real-timeliness - are users
willing to wait long enough for the crowd to respond? We believe
the answer is quite positive. A car moving at 30 mph = 48 kmph
takes 15 seconds to cover one 200m long city block. Even if a path
decision had to be made at every intersection, we would have about
15 seconds to run the algorithm. In practice, one rarely needs to
consider a turn at every intersection. Therefore the time interval
spent waiting for the response from the crowd is much longer. In
this paper, we address the problem of real-timeliness in Section 4.1,
by exploring the parallel processing power of the crowd. In particu-
lar, we ask the most informative k questions, which different work-
ers can pick up concurrently, cutting down the overall human pro-
cessing time. As shown in our experimental results (Section 5.4),
empowered by our technique (k = 10), the crowd can improve the
precision of path selection from 25% to 70% within 10 seconds,
which is less than half of the time cost without this technique (i.e.

Figure 1: Candidate Paths

Candidate Paths probability
P1={(s, v1), (v1, t)} .1

P2={(s, v2), (v2, v4), (v4, t)} .1
P3={(s, v3), (v3, v4), (v4, t)} .4

P4={(s, v3), (v3, t)} .4
Routing Query (RQ) pmf of ARQ over D

RQ1: s,D = (v1, v2, v3), t 0.1, 0.1, 0.8
RQ2: v3, D = (v4, t), t 0.5, 0.5

Binary Routing Query (BRQ) pmf of ABRQ (yes/no)
BRQ1: s, v1, t 0.1, 0.9
BRQ2: s, v2, t 0.1, 0.9
BRQ3: s, v3, t 0.8, 0.2
BRQ4: v3, v4, t 0.5, 0.5
BRQ5: v3, t, t 0.5, 0.5

Table 1: Path Distribution and Routing Queries

k = 1). Besides, there are also horizontal techniques of realtime
crowdsourcing [3, 4], which have shown promise in returning re-
sults to users in 500 milliseconds.

Another concern is that crowd workers may need to know the
traffic conditions in all directions to answer an RQ. So when the
degree of vertex is large, a worker may not be able to provide an ac-
curate answer. For instance, for a given road intersection, a worker
may be familiar with one or two of the directions, but not all of
them. Therefore, we consider another type of questions, called Bi-
nary Routing Query (BRQ), as shown at the bottom of Table 1.
EachBRQ contains only one direction, and asks the crowd to con-
firm or disconfirm, such as “From HKUST(v) to HKU(t), should
I go via Hang Hau (v1) or not?”. This kind of much simpler and
intuitive questions, in most circumstances, can be easily answered
correctly.

Since each crowdsourcing question is usually associated with a
cost, we need to design solutions to find the best path by crowd-
sourcing an optimal set of RQs. However, the selection is not triv-
ial due to the following two obstacles: first, the crowd has the prob-
ability of returning incorrect answers; second, the RQs generated
from a set of candidate paths are naturally correlated, so the util-
ity of a set of RQs may be difficult to compute. To address this
challenge, we design efficient and effective strategies to adaptively
select and issue RQs by utilizing the submodular property of the
selection hardness.

1.4 Contributions
We summarize our contributions as follows:

• First, we address the core optimization problem - how to se-
lect the most profitable questions with a given fixed budget.
We derive a non-trivial property of the utility for each RQ,
and propose an effective strategy to interactively select and
publish RQs. Both the crowd’s error and the correlation of
RQs are gracefully handled in the proposed solution.
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• Second, we indicate how to utilize noisy crowdsourced an-
swers to adjust the probability distribution of the best path,
and analyze the functional relations between the crowd’s ac-
curacy and a given RQ.

• Third, we consider two different extensions based on the pro-
posed framework - 1. we study how to select multiple RQs
and pose them concurrently to the crowd, in order to improve
the time efficiency; 2. we investigate an easier type of ques-
tions, namelyBRQ, as a replacement ofRQ for high-degree
vertices.

• Fourth, we conduct extensive experiments on both synthetic
and real datasets. The experimental results show the superi-
ority of our proposed methods in comparison with the base-
lines.

2. DEFINITIONS AND PROBLEM STATE-
MENT

In this section, we introduce the core definitions and related no-
tations, then formally state the problem.

DEFINITION 2.1 (CANDIDATE PATH). Given a source vertex
s and a target vertex t over a directed graph, a candidate path is a
sequence of edges P = {e0, e1, ..., e|P |}, such that s is the head of
e0, t is the tail of e|P |, and ∀ei, ei+1 ∈ P the tail of ei is the head
of ei+1.

Notation: For a given vertex v and a candidate path P , we use
P→ v and P 9 v to denote ‘P goes through v’ and ‘P does not
go through v’, respectively.

DEFINITION 2.2 (PATH SET (PS) & BEST PATH (BP)).
Given a source vertex s and a target vertex t, let PS be a set of
suggested candidate paths from s to t. The best path, denoted by
BP , is defined as a discrete random variable with PS as the sam-
ple space. Each candidate path P ∈ PS has a probability Pr(P )
being the best path, and we have

∑
P∈PS Pr(P ) = 1.

Example: P1, P2, P3 and P4 are candidate paths from s to t
in Table 1. We have P1 → v1 and P1 9 v2, indicating that
‘P1 goes through v1’ and ‘P1 does not go through v2’, respec-
tively. Moreover, PS = {P1, P2, P3, P4} is the path set from s to
t. We also have that the probability of P1 being the best path is
Pr(P1) = 0.1.

DEFINITION 2.3 (ROUTING QUERY (RQ)). Given a Path Set
PS with the source vertex s and the target vertex t, a Routing
Query RQ is defined as a triple < vin, D, t >, where
(1) vin denotes the start vertex, indicating a particular intersection;
(2) t is the target vertex of the given PS;
(3) D = {v1, ..., v|D|} denotes the set of all direct successors of
vin in PS, which indicates possible directions of moving from vin
to t, and |D| ≥ 2.

From the perspective of a crowd worker, an RQ is a question
that takes the form “From vin to t, which direction should I go, v0,
v1,..., or v|D|”.

Notation: Given a Path Set PS, we use URQ to denote the set
of all the RQs.

Example: In the middle part of Table 1, RQ1 and RQ2 indicate
two RQs. In particular, RQ2 is the question ‘from source v3 to
target t, which direction should I go, v4 or t’. Please note that

Notation Meaning
P or Pi a candidate path

Pr(P ) or Pr(Pi) the probability of P (Pi) being the best path
PS Path Set: the set of all

candidate paths for a pair of source and target
P → v P goes through vertex v
P 9 v P does not go through vertex v

RQ :=< vin, D, t > a Routing Query, with start vertex vin,
target t, and a set of directions D

ARQ the correct answer to RQ
URQ the set of all RQs for a given PS
Sk a subset of URQ containing k RQs
ASk

the set of k answers to Sk

BRQ a Binary Routing Query
ABRQ the correct answer to BRQ
BP the best path for a given PS

H(BP ) the selection hardness among candidate paths
∆HRQ the expected reduction of

selection hardness by asking the crowd RQ
∆HSk

the expected reduction of selection hardness
by asking the crowd all the RQs in Sk

ε the error rate of a crowd worker
X⊥Y |Z X is independent of Y given Z,

where X,Y, Z are random variables

Table 2: Summary of Notations

the start vertex (i.e. vin) of an RQ may not be the source vertex
(i.e. s) of the path set, such as RQ2. Besides, we have URQ =
{RQ1, RQ2}.

DEFINITION 2.4 (SELECTION HARDNESS). Given a path set
PS = {P1, P2, ..., P|PS|}, the hardness of selecting the best path
BP, denoted byH(BP ), is defined as Shannon entropy ofBP , that
is,

H(BP ) = −
∑

P∈PS

Pr(P ) log(Pr(P ))

Remark: The essential purpose of collecting information from
the crowd, is to make it easier to select the best path from the given
candidates. Therefore, we need to quantitatively evaluate how dif-
ficult it is to select the BP from a given PS . Since BP can
be seen as a discrete random variable with sample space PS, we
use the Shannon entropy to measure the hardness of selecting BP
from PS. As the reasons discussed in Section 1, Shannon entropy
well captures the rationale of selection hardness. Besides, it is a
non-parametric measurement that does not require any assumptions
about external factors. This enables us to have a fairly simple but
useful model.

DEFINITION 2.5 (PROBLEM DEFINITION). Assume we are
given a path set PS and a budgetB of the number ofRQs. Without
exceeding the budget, we aim to design strategies to crowdsource
RQs in order to maximally reduce the selection hardness H(BP ).

3. RQ-BASED METHOD
In this section, we present a complete solution to select and

crowdsource RQs in order to reduce the selection hardness. First,
we use the expected reduction of selection hardness as the met-
ric to evaluate RQs, and derive necessary formulas to enable the
computation. Second, we study how to efficiently select the best
RQ. Third, we present how to utilize conflicting crowdsourced an-
swers. Lastly, we put these together to develop a framework of the
RQ-based method, which reduces the selection hardness using a
sequence of RQs.
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3.1 RQ Selection Metric
In order to design an effective strategy for selecting RQs, it is

essential to define a metric to estimate the utility of an RQ before
it is answered. Since the final objective is to reduce the selection
hardness, we use the probabilistic expectation of selection hardness
conditioned on individual RQs as the metric.

For an arbitrary RQ :=< vin, D, t >, let ARQ be its correct
answer. Probabilistically, ARQ is a discrete random variable with
sample space D. Therefore, the expectation of selection hardness
after receiving ARQ, denoted as EH(BP |ARQ), is

EH(BP |ARQ)

=
∑
vi∈D

Pr(ARQ = vi)H(BP = P |ARQ = vi)

=
∑
vi∈D

Pr(ARQ = vi)
∑

Pj∈PS

[Pr(BP = Pj |ARQ = vi)

log(Pr(BP = Pj |ARQ = vi))]

(1)

There are two parameters used in Equation 1 : Pr(ARQ =
vi) (i.e. the probability that vi is the correct answer to RQ) and
Pr(BP = Pj |ARQ = vi) (i.e. the probability that Pj is the best
path, given that vi is the correct answer to RQ). Now we present
the formulas to compute these two parameters with Lemma 3.1 and
Lemma 3.2.

LEMMA 3.1 (COMPUTATION OF Pr(ARQ = vi)). For a
given path set PS, let ARQ be the correct answer to RQ :=<
vin, D, t >, vi ∈ D and e := (vin, vi), we have

Pr(ARQ = vi) =

∑
P∈PS∧e∈P Pr(P )∑

P ′∈PS∧P ′→vin
Pr(P ′)

(2)

PROOF. Please see appendix.

Equation 2 computes the probability of ARQ taking each ele-
ment of D, hereby we have the probability mass function (pmf) [9]
of ARQ.

Example: In the example of Table 1, the probability mass func-
tions of the answers for RQ1 and RQ2 are demonstrated. For
RQ2, we havePr(ARQ2 = v4) = Pr(P4)/(Pr(P3)+Pr(P4)) =
0.4/(0.4 + 0.4) = 0.5.

LEMMA 3.2 (COMPUTATION OF Pr(BP = Pj|ARQ = vi)).
For a given path set PS, let ARQ be the answer to RQ :=<
vin, D, t >, vi ∈ D, and e := (vin, vi), we have

Pr(BP = Pj |ARQ = vi) =


Pr(Pj) Pj 9 vin∑

P∈PS∧P→vin
Pr(P ) e ∈ Pj

0 otherwise
(3)

PROOF. Please see appendix.

The result of Lemma 3.2 is intuitive: when a candidate path Pj

does not go through vin, its probability remains unchanged; when
Pj goes through e := (vin, vi), Pj is consistent with the direction
ofARQ, then Pr(Pi) is increased to the probability ofBP → vin;
otherwise, Pj contradicts the direction of ARQ, and hence has a
probability of zero.

Example: In the example in Table 1, we have 1) Pr(BP =
P1|ARQ2 = v4) = Pr(P1) = 0.1 since P1 9 v3; 2) Pr(BP =
P3|ARQ2 = v4) = Pr(BP → v3) = Pr(P3) + Pr(P4) = 0.8

since e := (v3, v4) ∈ P3; 3) Pr(BP = P4|ARQ2 = v4) = 0
since P4 → v3 and e /∈ P4, which indicates that the direction of
P4 contradicts ARQ2 = v4.

Finally, by substituting Equations 2 and 3 into Equation 1, we
can compute the expectation of selection hardness w.r.t each RQ.

3.2 Choosing the best RQ
A naive approach of selecting the best RQ is to traverse all the

RQs. However, the computation regarding to each RQ requires
accessing all the candidate paths in PS, so the computational cost
will be high when the number of candidate paths is large. Fortu-
nately, we find that the expected reduction of selection hardness for
RQ :=< vin, D, t > is only related to the paths going through
vin. We conclude this discovery with the following theorem.

THEOREM 3.3. For a given path set PS and a given RQ :=<
vin, D, t >, let ∆HRQ be the expected reduction of selection hard-
ness by asking RQ to the crowd. We have that ∆HRQ is equiva-
lent to ‘the entropy of ARQ’ multiplying ‘the probability of BP →
vin’, i.e.

∆HRQ = H(BP )− EH(BP |ARQ)

= −(
∑

P→vin

Pr(P ))
∑
vi∈D

Pr(ARQ = vi) logPr(ARQ = vi)

(4)

PROOF. Please see appendix.

Theorem 3.3 reflects two factors influencing the utility of anRQ
- ‘the entropy of theRQ’ and ‘the probability of the best path going
through vin’. Intuitively, the former indicates the amount of infor-
mation gained by asking this question, so the higher the entropy is,
the more important the question is; the latter indicates the structural
position of the question, representing how useful the information
gain is for determining the best path. It is worth noticing that, the
common practice ‘asking the most uncertain question’ does NOT
apply in our problem, as shown in the following example.

Example: In the example of Table 1, we compute ∆HRQ1 and
∆HRQ2 as follows. For ∆HRQ1 , since all the paths go through s,
we have

∑
P→s Pr(P ) = 1, and ∆HRQ1 = −0.1 ∗ log(0.1) −

0.1∗log(0.1)−0.8∗log(0.8) = 0.28; for ∆HRQ2 ,
∑

P→s Pr(P ) =
Pr(P3) + Pr(P4) = 0.8 since P3 and P4 go through v4, so
∆HRQ2 = 0.8 ∗ (−0.5 ∗ log(0.5) − 0.5 ∗ log(0.5)) = 0.24.
Therefore, we should choose RQ2 over RQ1, although the entropy
of RQ1 (0.3) is larger than RQ2 (0.28).

3.3 Utilization of Crowdsourced Answers
The essential objective of crowdsourcing is to use the answers

to adjust the probability distribution of the best path. However,
crowdsourced answers may have mistakes or be subjective. As a re-
sult, different workers may return conflicting answers for the same
question. To handle this issue, we must allow each crowdsourced
answer to be wrong with a probability. This probability can be esti-
mated by the error rate of the worker. For anRQ :=< vin, D, t >,
let vC be the result returned by a crowd worker with error rate ε.

Now we present how to use crowdsourced answers to adjust the
probability of each candidate path Pi, that is to derive the formula
to compute Pr(BP = Pi|vC returned by the crowd), as shown
in Lemma 3.4.

LEMMA 3.4. For a given path setPS and anRQ :=< vin, D, t >,
let vC be the result returned by a crowd worker with error rate ε,
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then we have
Pr(BP = Pi|vC returned by the crowd) =
Pr(Pi) Pi 9 vin

Pr(Pi)(1− ε)
Pr(ARQ = vC)(1− ε) + (1− Pr(ARQ = vC))ε

(vin, vC) ∈ Pi

Pr(Pi)ε

Pr(ARQ = vC)(1− ε) + (1− Pr(ARQ = vC))ε
otherwise

(5)

PROOF. Please see appendix.

Actually, by considering Pi as a Bernoulli random variable,
Pr(Pi|vC returned by the crowd) is the probability ofBP = Pi

conditioning on the event “vC returned by the crowd”. Therefore,
when more answers are received, the probability of BP = Pi

would be recursively adjusted by Equation 5, conditioning on each
received answer and the error rate of the corresponding worker.
Please note that different workers may have different error rates.
Furthermore, after the probabilities of the candidate paths are ad-
justed by one answer, the probability distribution of each ARQ is
also updated by recomputing Equation 2. Thus, when the next
answer is received, the adjustment is conducted with the updated
probability of each Pi.

It is easy to perform the algebraic manipulations to show that,
for any two answers vC and v′C , we have

Pr(BP = Pi|vC returned by the crowd,

and then v′C returned by the crowd)

=Pr(BP = Pi|v′C returned by the crowd,

and then vC returned by the crowd)

= Pr(BP = Pi|vC and v′C are returned by the crowd)
(6)∑

Pi∈PS

Pr(BP = Pi|vC) = 1 (7)

These two equations resolve three issues of concern. The first is
whether the sequence of answers received from the crowd affects
the final result. Equation 6 indicates that, given two crowdsourced
answers, the final result ofPS is independent of the sequence of the
answers being utilized. In other words, the final result of Pi is the
probability of BP = Pi conditioning on the event “both answers
are received”. The second issue is how to resolve the case when the
same question is answered differently by multiple workers. Partic-
ularly, in Equation 6, v′C and vC may be conflicting answers for the
same RQ from two workers. In this case, by recursively executing
Equation 5 twice, vC and v′C are gracefully aggregated. Third, after
the utilization of crowdsourced answers, whether the sum of prob-
abilities of all candidate paths is always one. This is verified to be
true as shown in Equation 7. We show how to use a crowdsourced
answer with the following example.

Example: In the example of Table 1, we have the current selec-
tion hardness H(BP ) = −0.1 ∗ log(0.1)− 0.1 ∗ log(0.1)− 0.4 ∗
log(0.4) − 0.4 ∗ log(0.4) = 0.52. Now assume a crowd worker
returns ‘v4’ as the answer to RQ2 with error rate 0.2. We apply
Equation 5 on all the candidate paths as follows. Since P1 and P2

do not go through v3, their probabilities remain unchanged. Be-
sides, Pr(P3|ARQ = v4) = 0.4 ∗ (1 − 0.2)/(0.5 ∗ (1 − 0.2) +
(1 − 0.5) ∗ 0.2) = 0.64 and similarly Pr(P4|ARQ = v4) =
0.4 ∗ 0.2/(0.5 ∗ 0.2 + (1 − 0.5) ∗ (1 − 0.2)) = 0.16. So the
probabilities of P1,P2,P3 and P4 are 0.1,0.1,0.64 and 0.16, re-
spectively. As a consequence, the selection hardness is reduced to
H(BP |v4 returned by the crowd) = −0.1 ∗ log(0.1) − 0.1 ∗
log(0.1)− 0.64 ∗ log(0.64)− 0.16 ∗ log(0.16) = 0.45.

Input: A path set PS, URQ, a total budget B
1 while B 6= 0 do
2 for each RQi ∈ URQ do
3 calculate ∆HRQi

via Theorem 3.3;
end

4 RQmax ← argmaxRQi∈URQ
∆HRQi

;
5 Ask RQmax to crowd and receive the corresponding answer vC ;
6 for each Pj ∈ PS do
7 Pr(Pj)← Pr(BP = Pj |vC returned by the crowd)

via Formula 5;
end

8 B ← B − 1;
end

Algorithm 1: The Framework of RQ-based Method

3.4 The Framework of RQ-based Method
In this subsection, we provide the complete framework of the

RQ-based method. Algorithm 1 illustrates this framework, which
consists of two iterative phases:

• Choosing the best RQ - select the best RQ based on the cur-
rent probabilities of candidate paths, and post it to the crowd
(lines 1-5);

• Utilization of Conflicting Crowdsourced Answers - adjust the
probabilities of all candidate paths according to the crowd-
sourced answers. (lines 6-8)

In Algorithm 1, these two phases are iteratively performed B
times given the budget constraint. In each iteration, we first calcu-
late the expected reduction of selection hardness, ∆HRQ, for each
RQ via Theorem 3.3. Then, the one with maximum ∆HRQ is se-
lected and published to the crowd. Second, we receive the answer
vC , and adjust the probabilities of all candidate paths through For-
mula 5, hereby reducing the selection hardness.

4. EXTENSIONS OF RQ-BASED METHOD
In this section, we propose two extensions of the RQ-Based method.

First, to reduce the latency and improve the realtime performance,
we extend the RQ-based method to the scenario of asking multi-
ple questions concurrently. Second, we consider a different type of
questions to ask the crowd, namely Binary Routing Query (BRQ),
which is easier and more user-friendly.

4.1 Extension 1: Asking Multiple Questions
Up until now, we have been asking the crowd one question at a

time. However, in order to reduce latency, we may also ask multi-
ple questions at a time in a crowdsourcing environment. According
to the strategy of choosing the best RQ in Section 3.2, a straight-
forward heuristic solution is to select the top-k questions which
have the highest expected reduction of selection hardness. How-
ever, such a solution neglects the fact that there is a correlation
existing between RQs. Thus, it is non-trivial to select the best
combination of k questions. In this subsection, we first formulate
the problem of selecting the best combination of k questions, and
then propose an effective sampling-based solution.

4.1.1 Formulations and Notations
Before presenting our solution, we introduce several new no-

tations and formulate the problem of selecting the best combina-
tion of k questions. Given the set URQ including all the RQs
for a path set, let Sk be a size-k subset of URQ, that is Sk =
{RQ1, RQ2, · · · , RQk} ⊆ URQ. The set of answers of Sk is
denoted asASk = {ARQ1 , ARQ2 , · · · , ARQk}, which follows the
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joint distribution of the random variablesARQ1 , ARQ2 , · · · , ARQk .
Please note that ARQ1 , ARQ2 , · · · , ARQk are correlated in gen-
eral.

According to the above notations, the problem of selecting the
best combination of k questions is to select k RQs from URQ,
such that the expected selection hardness is maximally reduced.
Let ∆HSk denote the expected reduction of the selection hardness,
i.e.

∆HSk = H(BP )− EH(BP |ASk ) (8)

Therefore, we have the optimization problem

argmax
Sk⊆URQ,|Sk|≤k

∆HSk

whereH(·) indicates the selection hardness in Definition 2.4, mod-
eled in the form of the Shannon entropy. From the perspective of
information theory [7], ∆HSk can be considered as the mutual in-
formation between BP and ASk .

4.1.2 Sampling-based Method
Based on the aforementioned formulation of selecting the best

combination of k questions, there are
(|URQ|

k

)
possible size-k com-

binations. As a result, the size of the sample space of ASk is ex-
ponential of k. In other words, finding the optimal set Sk of RQs
is very expensive when k is large. To address this challenge, we
utilize the fact that ∆HSk can be considered as the mutual infor-
mation, which is naturally a submodular function [2].

Submodularity is an intuitive property of diminishing returns,
stating that adding an element to a smaller set helps more than
adding it to a larger set. In our problem, the submodularity indi-
cates that the utility of an RQ may be reduced when it is asked in
conjunction with other RQs. Explicitly, if we consider ∆HSk as
a set function with domain URQ, the selection problem is how to
maximize ∆HSk with a budget constraint k. In general, maximiz-
ing the a submodular function is NP-hard, but fortunately approx-
imable [2]. In particular, it is indicated that the problem of selecting
a k-element subset maximizing a submodular function can be ap-
proximated with a performance guarantee of (1 − 1/e) = 63%,
by iteratively selecting the local optimal element given the ones
selected so far.

As a result, the challenge of choosing the best combination of
k questions is transformed to how to efficiently discover the local
maximum in each iteration. According to the aforementioned for-
mulation of ∆HSk , we need to computeH(BP ) andH(BP |ASk )
efficiently. However, the mutual information is calculated over(|URQ|

k

)
possible combinations, rendering the enumeration imprac-

tical. Therefore, we adopt a sampling-based method to estimate the
mutual information. Considering ∆HSk as the mutual information
of BP and ASk , we rewrite Equation 8 as

∆HSk =
∑

BP,ASk

Pr(BP,ASk ) log
Pr(BP,ASk )

Pr(BP ) · Pr(ASk ) (9)

Intuitively, we use the frequencies of samples to estimate the prob-
abilities. Let function freq(·) denote the count (i.e. number of
occurrences) of a specific value in the sampling process. We define
the estimator of ∆HSk , denoted by ˆ∆HSk , as follows:

∆HSk ≈ ˆ∆HSk

=
∑

BP,ASk

freq(BP,ASk ) log
freq(BP,ASk )

freq(BP ) · freq(ASk )
(10)

where freq(BP ) =
∑

ASk
freq(BP,ASk ) and freq(BP ) =∑

BP freq(BP,ASk ).

Input: A path set PS, URQ, the number of RQs k for each round, a
total budget B

1 while B 6= 0 do
2 i = 0; paid = 0; Sk = ∅;
3 for i <= k − 1 do
4 for each RQi ∈ URQ do
5 calculate ∆HSk

via Formula 10 ;
end

6 RQmax ← argmaxRQi∈URQ
∆HSk

;
7 Sk = Sk ∪RQmax ;

end
8 Ask RQs in Sk to crowd and receive the corresponding answers;
9 for each crowdsourced answer vC do

10 for each Pj ∈ PS do
11 Pr(Pj)← Pr(BP = Pj |vC) via Formula 5;

end
12 paid← paid+ 1;

end
13 B ← B − paid;
14 if B < k then
15 k = B ;

end
end

Algorithm 2: Asking Multiple Questions: k-selection

Based on the aforementioned estimator, we can obtain an unbi-
ased estimation of mutual information through the sampling method.

To sum up, the complete solution for asking multiple questions
is shown in Algorithm 2, namely k-selection. The basic idea is to
select the best size-k subset Sk by means of the aforementioned
sampling method, then publish k RQs at each round, and adjust
the probabilities of the candidate paths according to the answers
collected from the crowd.

In Algorithm 2, we first select the k-size subset Sk in a greedy
fashion (lines 2-7). Then the questions in Sk are published to the
crowd (line 8). Please note that the RQs are either answered or
expired, and the expired ones are free of cost. For each crowd-
sourced answer, we adjust the probabilities of candidate paths by
recursively using Formula 5 (lines 9-12).

4.2 Extension 2: Different Question Type
In the RQ-based method, each RQ is a multiple-choice ques-

tion. For a high-degree vertex, the RQ would consist of too many
options for a crowd worker. As suggested in [23, 26], crowds are
good at tasks broken down into small pieces (often with a YES/NO
answer). Motivated by this, we consider an extension that uses an
easier type of questions, namelyBRQ, as defined by the following
Definition 4.1.

DEFINITION 4.1 (BINARY ROUTING QUERY (BRQ)). For a
given RQ :=< vin, D = {v0, ..., v|D|}, t >, a Binary Routing
Query BRQ is triple < vin, vd, t >, where vd ∈ D.
From the perspective of a crowd worker, a BRQ is a question that
takes the form “From vin to t, should I go in the direction of vd?”

Let ABRQ be the correct answer to BRQ, then ABRQ can be
probabilistically considered as a Bernoulli random variable since
the answer of BRQ is either yes or no. The bottom part of Table 1
lists all the BRQs for the PS. It is not hard to see that each RQ
can be decomposed into |D| distinct BRQs. As a new type of
questions, BRQs can be easily embedded in Algorithms 1 and 2.
Analogous to the RQ-based method, we also focus on studying how
to select the best BRQ in this extension.

Finding the best BRQ: As shown in Theorem 3.3, the utility
of an RQ is determined by its information gain and topological
position. For BRQs, we reach a similar result, as shown in the
following theorem.
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(c) k-selection ε = 0.1
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(d) baseline ε = 0.3
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(e) baseline ε = 0.2
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(f) baseline ε = 0.1

Figure 2: Performance VS k

THEOREM 4.1. For a given path setPS and a givenBRQ :=<
vin, vd, t >, let ∆HBRQ be the expected reduction of selection
hardness by asking the BRQ to the crowd, we find that ∆HBRQ

is equivalent to ‘the probability of BP → vin’ multiplying ‘the
entropy of the ABRQ’, that is

∆HBRQ = H(BP )− EH(BP |ABRQ)

= −(
∑

P→vin

Pr(P ))[Pr(ABRQ = vd) logPr(ABRQ = vd)

+ (1− Pr(ABRQ = vd)) log (1− Pr(ABRQ = vd))]

PROOF. Please see appendix.

5. EXPERIMENTAL EVALUATION
In this section, we report on the experimental study to validate

the effectiveness and efficiency of our proposals. First, we use syn-
thetic data and a simulated crowd to explore the effect of wide
ranges of parameter values. Second, we conduct an experiment
with real-world datasets on Amazon Mechanical Turk, which is a
public crowdsourcing platform.

In the experiments, we compare the following three algorithms.
1. k-selection algorithm(k-selection), our proposed methods in

Section 3 & 4. When k = 1, we select one best RQ following
the algorithm introduced in Section 3; when k > 1, we applied the
sampling-based algorithm described in Section 4.1.

2. baseline algorithm (baseline) - at each round, the RQs with
top-k highest entropies are selected.

3. naive algorithm (rand) - each RQ is chosen randomly.

5.1 Simulation on Synthetic Data
In order to explore the effect of wide ranges of parameter values,

i.e. ε and k, we conduct a series of experiments on a synthetic
dataset with a simulated crowd. In particular, the crowd answers
each RQ independently, and each RQ has a probability ε to be
incorrectly answered. Each PS in the synthetic dataset contains 50
candidate paths, one of them is labeled as the best. We set the total
budget of RQs B = 60 for a PS, and at each iteration we select
and publish k RQs, so there are totally d60/ke iterations (there are
maybe less than k RQs in the last iteration).

Effect of k: First, we test k-selection and baseline with varying
k in Figure 2. Recall that k is the number of questions issued in

each iteration. So, for a fixed budget, a larger k results in smaller
a number of iterations. When k = 1, we essentially sort the list of
all the RQs by their utilities (with Theorem 3.3), and choose the
very best one at each iteration - all the RQs are at the top of the list
when they are chosen. When k > 1, some RQs are not at the top
of the list when they are chosen, since at each iteration, we choose
k good RQs rather than the very best one. Therefore, we expect
that the selection hardness is reduced more rapidly with a smaller
k. This expectation is basically consistent with the experimental
results, as shown in Figure 2. In particular, k is set to 1, 2, 4, 6, 8
and 10 in the experiment, and we can see that a smaller k tends
to be more effective on reducing the selection hardness. Although
this tendency is very clear, but smaller k does not lead to absolutely
more rapid reduction, due to the randomness of the sampling-based
algorithm as well as the possibly wrong answers. The advantage of
larger k is the time cost due to the less number of iterations, which
is to be discussed in Section 5.4.

Effect of ε: Second, we present the results on varying the error
rate ε. For all three competing algorithms, we find that the lower ε
is, the faster the convergence is. This finding is supported by ob-
serving Figures 3(a)-3(c), Figures 3(d)-3(f), Figures 3(g)-3(i), and
Figures 3(j)-3(l). In other words, we would need less RQs for a
crowd with higher accuracy. Moreover, as shown in Figures 3(a)-
3(l), regardless of the setting of k, ε and the option of the algorithm,
the selection hardness H(BP ) is gradually decreased with the re-
ception of crowdsourced answers. This suggests that the crowd is
conducive for path selection in general.

Comparison of k-selection, baseline, and rand: Third, we
compare the performances of k-selection, baseline and rand in terms
of the reduction of selection hardness. As indicated in Figure 3,
baseline and k-selection significantly outperform rand in all the
cases. It is worth noting that k-selection and baseline sometimes
have similar performance when k = 1 or when the error rate is
small. This is because the initial probabilities of edges are usually
the same, which causes that both algorithms always select the RQ
with a probability closest to a uniform distribution, and achieve
their respective local optima as a consequence. When k > 1 and
the error rate is higher, k-selection performs better than baseline in
most cases, which is supported by Figures 3(e)-3(g),3(i),3(k),3(l).
This is because our k-selection considers the inherent correlation
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(l) k = 8, ε = 0.3

Figure 3: ε = 0.1, 0.2, 0.3 and k = 1, 2, 4, 8

among RQs, which is an intrinsic advantage comparing to base-
line.

Another important finding is that, with the increase of the crowd
error rate ε, the advantage of k-selection becomes much more no-
table compared to baseline and rand. This phenomenon suggests
that the proposed algorithm has superior performance especially
when the crowds are noisy. By adjusting k, users are able to trade-
off the time efficiency and utility of RQs - large k leads to high
time-efficiency, but relatively low utility.

5.2 Testing on with Real Data
We use two real-world road-network datasets - CA and SF [29,

30]. In particular, CA consists of highways and main roads in
California and SF contains detailed street networks in San Fran-
cisco. We construct 30 PSs from SF, and 40 PSs from CA. We
add the random uncertainty to each edge, then, for each PS, the
candidate paths and probabilities are aggregated from a number of
suggested paths generated by two different recommendation algo-
rithms [14, 32]. Each of them generates top-10 paths, and we have
3-15 distinct paths for each PS.

We tested these two real-world datasets on Amazon Mechanical
Turk (AMT), which is a widely used crowdsourcing marketplace.
We set the budget of RQs B = 60, and each RQ is awarded 0.03
USD for both datasets. We compare k-selection, baseline and rand
with k = 1, 5, 10. The average performances are demonstrated in
Figure 4. In terms of the reduction of selection hardness, one can
see that the performance is basically consistent with the simulation
- k-selection and baseline outperform rand. Please note a budget
is set up for each PS, so users are allowed to set different budgets

for different data instances. Moreover, we estimate the difficulty
of each RQ with the method introduced in [12]. In particular, the
difficulty of each RQ is evaluated by a Beta distribution, and too
difficultRQs should be eliminated. As a result, only 3RQs are re-
moved through the entire experiment. This suggests that the over-
whelming majority ofRQs are not difficult for the crowd. Besides,
we found that the workers usually have consistent answers. This
suggests that our crowdsourcing model is valid.

In the experiment above, we assign random uncertainty to the
road networks. Additionally, we conducted another set of exper-
iments with different uncertainty distributions, which reflects the
situation that downtown edges have lower uncertainty than rural
areas. In particular, we partition the road network of CA into 20
small regions, and add uncertainty to edges from normal distribu-
tions with different variances. We simulate situations where the
downtown edges have lower uncertainty (with high variance) than
rural areas (with small variance). The experimental results are con-
sistent with the ones included in this paper. Due to space limita-
tions, we put detailed results in the technical report [33].

5.3 Effectiveness
We conducted experiments to exhibit the goodness of paths se-

lected by the crowd. One thing worth noting is that the goodness
of a path is not absolute. Nevertheless, in order to present a fairly
objective evaluation, we carefully select 40 PSs (20 for CA and
20 for SF ), such that each of them contains a candidate path rec-
ommended by different third-party systems, namely Google Map
(https://maps.google.com ), Bing Map (http://www.bing.com/maps),
as well as Yahoo Map (https://maps.yahoo.com). The common
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(b) SF k = 5
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(c) SF k = 10
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(f) CA k = 10

Figure 4: Testing on Real Data
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paths recommended by all the systems are assumed to be the ground
truth [25].

For each path set PS, we run the algorithms and consider the
candidate path with the highest probability as the output, which is
compared with the ground truth. Moreover, for comparison, we
use Raw Data to indicate the candidate paths with the highest
probabilities directly from the input PSs. As shown in Figure 5,
the crowdsourced paths can achieve very high accuracy in both
datasets. In addition, we find that k-selection outperforms base-
line and rand in terms of precision. From Figure 5, we can also
observe that Raw Data has quite a low precision, which indicates
the necessity of crowdsourcing.

5.4 Time Cost
In this subsection, we empirically examine the time-efficiency

of the crowd, and the relation between it and the effectiveness. For
comparison with RQ, we present an experiment asking the crowd
to evaluate the complete paths (denoted by CP ) - an entire candi-
date path is provided to the crowd, and the worker needs to confirm
or disconfirm whether the given path is the best.

First, we compare the average time cost of RQ with that of CP ,
as shown in Figure 6(a). One can see that RQs can be finished
within 10 seconds. But CP takes much longer as it is more com-
plex for workers. In Figure 6(b), we also demonstrate the precision
of CP and RQ. It is clear that RQ is more accurate than CP .

Second, we study the relationship between the time efficiency
and the effectiveness of k-selection. Intuitively, the longer time it
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Figure 6: Efficiency and Accuracy

takes, the higher the precision is, since more workers could partic-
ipate and return answers. We demonstrate the experimental results
in Figures 6(c) and 6(d), in which we run k-selection for 60 sec-
onds. As we can see, by setting k = 10, the precision achieves over
70% within 10 seconds for both datasets. Comparatively, when we
set k = 1, it takes over 20 seconds to achieve the same precision.
However, if the time constraint is 60 seconds, the precision would
go up to 90%, by setting k = 1. In conclusion, a large k value
is suggested if latency is the primary constraint, whereas a small
value of k is recommended if the primary constraint is accuracy.

6. RELATED WORKS

6.1 Crowdsourcing
The recent development of crowdsourcing brings us a brand new

opportunity to engage human intelligence in the process of answer-
ing queries (see [10] as a survey). Crowdsourcing provides a new
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problem-solving paradigm [5,19], which has been blended into sev-
eral research communities. In particular, crowdsourcing-based data
management techniques have recently attracted much attention in
the database and data mining communities. From a practical view-
point, [11] proposed and developed a query processing system us-
ing microtask-based crowdsourcing to answer queries. Moreover,
in [22], a declarative query model is proposed to cooperate with
standard relational database operators. In addition, from the view-
point of theoretical study, many fundamental queries have been ex-
tensively studied, including filtering [21], max [13], and so on. Be-
sides, crowdsourcing-based solutions to many complex algorithms
have also been developed, such as entity resolution [27, 28], trip
planning [16] and so on.

6.2 Path Recommendation
Finding the most desirable path has been receiving tremendous

research interest for decades. The most popular topic in this area is
shortest path finding, which has been extensively studied for over
fifty years [1]. If the weight on each edge represents travel time,
shortest path finding becomes fastest path finding. Time-dependent
shortest path problem [20] regards the travel time of an edge as a
single-value function on the time of day. To improve routing ser-
vices, new approaches [31] for fastest path finding are proposed
aiming at using user-generated GPS trajectories to estimate the dis-
tribution of travel time on a given road network. In addition, [6,18]
propose efficient algorithms to discover the paths preferred by hu-
mans (e.g. experienced drivers) from GPS trajectories.

To the best of our knowledge, this is the first work studying the
path selection problem with crowdsourcing. The essential objective
is to make it easier for users to select the best path among a number
of candidates. The recent work [25] proposes a system to leverage
crowds’ knowledge to improve the quality of recommended routes.
Our paper distinguishes itself with [25] from the two aspects: first,
we ask the crowd to identify the direction at each road intersection;
second, we adjust the distribution of recommended paths, rather
than identify the very best one.

7. CONCLUSION
A GPS-based navigation system usually suggests multiple paths

for a pair of given source and target. Therefore, a problem strug-
gling with users is how to select the best one among them, namely
the best path selection problem. In this paper, we utilize crowd-
sourcing to ease the pain of best path selection. In particular, we
design two types of questions, namely Routing Query (RQ) and
Binary Routing Query (BRQ), to ask the crowd to decide the di-
rection at each road intersection. Furthermore, we propose a series
of efficient algorithms, which dynamically manage the questions
in order to reduce the selection hardness with a limited budget of
questions. Finally, we verified the effectiveness and efficiency of
our proposed approaches through experiments with synthetic and
real-world datasets.
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APPENDIX
Proof of Lemma 3.1

PROOF. Recall thatRQ is a question asking how to move forward start-
ing from vin. Hence, ARQ = vi indicates e := (vin, vi) ∈ BP , given
BP goes through vin. Then we have

Pr(ARQ = vi) = Pr(e ∈ BP |BP → vin)

=
Pr(BP → vin|e ∈ BP )Pr(e ∈ BP )

Pr(BP → vin)

Please note that vin is the head of edge e, so given the condition that e is
on the best path (i.e. e ∈ BP ), the best path must go through vin, that is,
Pr(BP → vin|e ∈ BP ) = 1. Hence, we have

Pr(ARQ = vi) =
Pr(e ∈ BP )

Pr(BP → vin)

Following the Law of Total Probability [9], we have Pr(e ∈ BP ) =∑
P∈PS Pr(e ∈ BP∩BP = P ) =

∑
P∈PS∧e∈P Pr(P ) andPr(BP →

vin) =
∑

P ′∈PS Pr(P
′ → vin∩BP = P ′) =

∑
P ′∈PS∧P ′→vin

Pr(P ′).

Finally, we have Pr(ARQ = vi) =

∑
P∈PS∧e∈P Pr(P )∑

P ′∈PS∧P ′→vin
Pr(P ′)

, which

completes the proof.

Proof of Lemma 3.2
PROOF. The main difficulty of deriving Pr(BP = Pj |ARQ = vi) is

to determine the correlation between ‘BP = Pj ’ and ‘ARQ = vi’. We
observe that this correlation is closely related to ‘BP → vin’, i.e. whether
the best path goes through the start point of RQ. Therefore, we expand
Pr(BP = Pj |ARQ = vi) with the Law of Total Probability as follows:

Pr(BP = Pj |ARQ = vi) =

Pr(BP → vin)Pr(BP = Pj |ARQ = vi, BP → vin)

+ (1− Pr(BP → vin))Pr(BP = Pj |ARQ = vi, BP 9 vin)
(11)

where we have Pr(BP → vin) =
∑

P∈PS∧P→vin
Pr(P ).

We derive Pr(BP = Pj |ARQ = vi, BP → vin) and Pr(BP =
Pj |ARQ = vi, BP 9 vin) by respectively analyzing two exclusive con-
ditions - BP → vin and BP 9 vin.

Condition BP → vin: First, we analyze the situation that vin is on the
best path BP . For each vi ∈ D, if edge e := (vin, vi) is on the best path,

then vi must be the best direction going from vin to t, i.e. the ground truth
answer ARQ should be vi. Therefore, we have e ∈ BP ⇒ ARQ = vi.

Similarly, if ARQ = vi and BP → vin, we can ensure that e ∈ BP .
So (ARQ = vi ∧ BP → vin) ⇒ e ∈ BP . Overall, we conclude that
e ∈ BP if and only if (ARQ = vi ∧BP → vin), i.e.

(ARQ = vi ∧BP → vin)⇔ e := (vin, vi) ∈ BP (12)

Therefore, we have

Pr(BP = Pj |ARQ = vi, BP → vin)

= Pr(BP = Pj |e := (vin, vi) ∈ BP )

=
Pr(e ∈ BP |BP = Pj)Pr(Pj)

Pr(e ∈ BP )

=
Pr(Pj)Pr(e ∈ Pj)

Pr(e ∈ BP )
=


0 e /∈ Pj

Pr(Pj)∑
P∈PS∧e∈P Pr(P )

otherwise

(13)
Condition BP 9 vin: Second, we consider the condition when the best

path does not go through vin. Note each vertex in D indicates a path that
is possibly the best direction going from vin to t, and we are interested in
the best path from the source vertex s to t. Therefore, the answer to RQ
gives us useful information only if vin is known to be on the best path. In
other words, if vin is not on BP , how to move from vin towards the target
does not affect the distribution of BP , since one will not even go to vin in
the first place. Probabilistically, BP and ARQ are independent given that
‘BP does not go through vin’. Formally, we have

ARQ⊥BP |BP 9 vin (14)

where we adopt ⊥ to denote the operator indicating two random variables
are conditionally independent [8].

From Formula 14, we have

Pr(BP = Pj |ARQ = vi, BP 9 vin)

= Pr(BP = Pj |BP 9 vin) Formula 14

=
Pr(BP 9 vin|BP = Pj)Pr(Pj)

Pr(BP 9 vin)
Bayes′ theorem

=
Pr(Pj 9 vin)Pr(Pj)∑

P9vin
Pr(P )

Law of Total Probablity

=


0 Pj → vin

Pr(Pj)∑
P∈PS∧P9vin

Pr(P )
otherwise

(15)

Then, by substituting Equations 15 and 13 into Equation 11, we complete
the proof.

Proof of Theorem 3.3
PROOF.

∆HRQ = H(BP )− EH(BP |ARQ)

= H(BP )−
∑

P∈PS

∑
vk∈D

[Pr(ARQ = vk)

Pr(BP = P |ARQ = vk) logPr(BP = P |ARQ = vk)]

(16)

Let X1 = −
∑

P9vin

∑
vk∈D[Pr(ARQ = vk)Pr(BP = P |ARQ =

vk) logPr(BP = P |ARQ = vk)] and
X2 = −

∑
P→vin

∑
vk∈D[Pr(ARQ = vk)Pr(BP = P |ARQ =

vk) logPr(BP = P |ARQ = vk)], then we have

∆HRQ = H(BP )−X1 −X2 (17)

Now we analyze X1 and X2 separately.

X1 = −
∑

P9vin

∑
vk∈D

[Pr(ARQ = vk|BP = P )Pr(BP = P )

log
Pr(ARQ = vk|BP = P )Pr(BP = P )

Pr(ARQ = vk)
]

(18)
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Note P 9 vin andBP = P indicate thatBP 9 vin, by Formula 14, we
have

X1 = −
∑

P9vin

∑
vk∈D

[Pr(ARQ = vk)Pr(BP = P )

log
Pr(ARQ = vk)Pr(BP = P )

Pr(ARQ = vk)
]

= −
∑

P9vin

Pr(P ) logPr(P )

(19)

X2 = −
∑

P→vin

∑
vk∈D

[Pr(ARQ = vk|BP = P )Pr(BP = P )

log
Pr(ARQ = vk|BP = P )Pr(BP = P )

Pr(ARQ = vk)
]

(20)

Note givenBP = P and e := (vin, vi) ∈ P , then e := (vin, vi) ∈ BP ,
therefore ARQ = vi according to Equation 12. Let ei := (vin, vi) ∈ Pi,
i.e. vi represents the direction of Pi, we have Pr(ARQ = vk|BP =
P ) = 0 if vk 6= vi; and Pr(ARQ = vk|BP = P ) = 1 if vk = vi.
Therefore, we write X2

X2 = −
∑

Pi→vin

∑
vk∈D

[Pr(ARQ = vk|BP = Pi)Pr(BP = Pi)

log
Pr(ARQ = vk|BP = Pi)Pr(BP = Pi)

Pr(ARQ = vk)
]

= −
∑

Pi→vin

[Pr(ARQ = vi|BP = Pi)Pr(BP = Pi)

log
Pr(ARQ = vi|BP = Pi)Pr(BP = Pi)

Pr(ARQ = vi)
]

= −
∑

Pi→vin

[Pr(BP = Pi) log
Pr(BP = Pi)

Pr(ARQ = vi)
]

(21)
By substituting X1 and X2 back to Equation 17, we have

∆HRQ = −
∑
vi∈D

logPr(ARQ = vi)
∑

e:=(vin,vi)∈P
Pr(P )

Then by substituting Equation 2, we complete the proof.

Proof of Lemma 3.4
PROOF. To prove this lemma, we need to consider three exclusive cases:

1) Pi 9 vin, i.e. Pi does not go through vin, so Pi is not affected by
the answer to the RQ; 2) (vin, vC) ∈ Pi, i.e. Pi goes through vin and
vC , which indicates that the crowdsourced answer is supportive for Pi; 3)
Pi → vin ∧ (vin, vC) /∈ Pi, i.e. Pi goes through vin but not vC , which
indicates that the crowdsourced answer is against for Pi. We list the details
for all three cases as follows.

Case 1) BP 9 vin: According to Equation 14, the answer to RQ is
independent of BP given BP 9 vin, so we have
Pr(BP = Pi|vC returned by the crowd) = Pr(BP = Pi) =
Pr(Pi);

Case 2) (vin, vC) ∈ Pi : We conduct transformation with Bayes’ theo-
rem

Pr(BP = Pi|vC returned by the crowd)

=
Pr(Pi)Pr(vC returned by the crowd|BP = Pi)

Pr(vC returned by the crowd)

(22)

On the one hand, we highlight the relation between two probabilistic events
- ‘vC returned by the crowd’ and ‘ARQ = vC ’. ‘Pr(ARQ = vC)’
indicates the probability that ‘vC ’ is the correct answer of the RQ. For vC
to be returned by the crowd, the event happened is either ‘vC is correct, and

the crowd does not make a mistake’, or ‘vC is wrong, and the crowd does
make a mistake’. Formally, we have

Pr(vC returned by the crowd) =

Pr(ARQ = vC)(1− ε) + (1− Pr(ARQ = vC))ε

On the other hand, because of BP = Pi as well as (vin, vC) ∈ Pi, we
have (vin, vC) ∈ BP , i.e. vC is the correct answer to RQ. That means
the crowd answers RQ correctly, i.e.

Pr(vC returned by the crowd|BP = Pi) =

Pr(crowd answers the RQ correctly) = 1− ε

So, in case of (vin, vC) ∈ BP , we have

Pr(BP = Pi|vC returned by the crowd) =

Pr(Pi)(1− ε)
Pr(ARQ = vC)(1− ε) + (1− Pr(ARQ = vC))ε

(23)

where Pr(ARQ = vC) is derived in Equation 2.
Case 3)Pi → vin ∧ (vin, vC) /∈ Pi: Analogous to case 2), since (vin, vC) /∈

Pi and (vin, vC) /∈ BP , we know that vC is an incorrect answer to RQ
conditioning on BP = Pi, i.e. the crowd answers RQ correctly. So,

Pr(vC returned by the crowd|BP = Pi) =

Pr(crowd answers the RQ incorrectly) = ε

Then we have
Pr(BP = Pi|vC returned by the crowd) =

Pr(Pi)ε

Pr(ARQ = vC)(1− ε) + (1− Pr(ARQ = vC))ε

(24)

By concluding the results of the above three cases, we have the proof com-
pleted.

Proof of Theorem 4.1
PROOF. (Sketch) Since the selection hardness is essentially the Shannon

entropy, we use H(.) to denote both the selection hardness and the entropy
of a random variable.

∆HBRQ = H(BP )− EH(BP |ABRQ)

= −H(ABRQ|BP ) +H(ABRQ)

= −
∑

BP=Pi

Pr(Pi)H(ABRQ|BP = Pi) +H(ABRQ)

= −
∑

Pi→vin

Pr(Pi)H(ABRQ|BP = Pi)

−
∑

Pj9vin

Pr(Pj)H(ABRQ|BP = Pi) +H(ABRQ)

(25)
On the one hand, when Pj 9 vin,BP = Pj andABRQ are independent,
analogous to Formula 14. Therefore, we have

−
∑

Pj9vin

Pr(Pj)H(ABRQ|BP = Pj) = −
∑

Pj9vin

Pr(Pj)H(ABRQ)

(26)
On the other hand, when Pi → vin, BP = Pi indicates that the correct
of ABRQ must be the direction of Pi. That is to say, we can ensure the
correct answer if we know Pi is the best path. Therefore, we have

−
∑

Pj9vin

Pr(Pj)H(ABRQ|BP = Pi) = 0 (27)

By substituting Equations 26 and 27, we rewrite Equation 25

∆HBRQ = H(ABRQ)−
∑

Pj9vin

Pr(Pj)H(ABRQ)

= −(1−
∑

P9vin

Pr(P ))H(ABRQ)

= −(
∑

P→vin

Pr(P ))[Pr(ABRQ = vd) logPr(ABRQ = vd)

+(1− Pr(ABRQ = vd)) log (1− Pr(ABRQ = vd))]

(28)

So we have the proof completed.
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