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ABSTRACT
We assume a dataset of transactions generated by a set of users
over structured items where each item could be described through
a set of features. In this paper, we are interested in identifying the
frequent featuresets (set of features) by mining item transactions.
For example, in a news website, items correspond to news arti-
cles, the features are the named-entities/topics in the articles and
an item transaction would be the set of news articles read by a user
within the same session. We show that mining frequent feature-
sets over structured item transactions is a novel problem and show
that straightforward extensions of existing frequent itemset mining
techniques provide unsatisfactory results. This is due to the fact
that while users are drawn to each item in the transaction due to a
subset of its features, the transaction by itself does not provide any
information about such underlying preferred features of users. In
order to overcome this hurdle, we propose a featureset uncertainty
model where each item transaction could have been generated by
various featuresets with different probabilities. We describe a novel
approach to transform item transactions into uncertain transaction
over featuresets and estimate their probabilities using constrained
least squares based approach. We propose diverse algorithms to
mine frequent featuresets. Our experimental evaluation provides a
comparative analysis of the different approaches proposed.

1. INTRODUCTION

1.1 Frequent Featureset Mining Problem
Technological progress has now enabled businesses to collect

fine-grained information about how users interact with their web-
sites and applications. Such information can include the articles
read, movies watched, items purchased etc. We consider a database
of structured items where each item can be described through a set
of features. Intuitively, we can represent each feature as a boolean
attribute whose presence or absence in an item can be observed. By
interacting with such items, users generate item transactions (trans-
actions over items.) For example, the set of articles read by the user
on any given day forms a transaction.
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Frequent itemset mining is an important first step in data analysis
for a broad class of applications. It returns a collection of itemsets
(set of items) that are most commonly consumed together. A huge
body of research literature studies this problem under various sce-
narios. In contrast to prior work that tries to identify itemsets from
item transactions (under various conditions), we consider a novel
problem of discovering frequent featuresets (set of features) from
item transactions.

FREQUENT FEATURESETS MINING (FFM) PROBLEM:
Given an database containing transactions over structured
items, identify the set of frequent featuresets.

The frequent featureset mining problem has variety of applica-
tions and is general enough to handle any scenario where transac-
tions over structured items are performed.

• Consider a music website such as last.fm. Here the items
correspond to songs and the features are the artists associated
with the song. The set of songs listened in a session can be
treated as item transaction. FFM tries to identify the artists
whose songs are listened together (without user mentioning
why she listens to a specific song).

• Consider a news website such as New York Times. Here the
items correspond to news articles, the features are the named
entities (such as Obama or Egypt) in the article, while a trans-
action could be the set of articles read by a user in a session.
Instead of identifying the most commonly read articles (as
done in traditional itemset mining), FFM tries to identify the
features that are consumed together.

• Consider a movie website such as IMDB. The movies corre-
spond to items while the features could be actors, directors,
genre etc. The set of movies watched (or rated) by a user in a
given period time could be considered as a transaction. FFM
tries to identify the set of features (such as an actor, director
combination) that are consumed together.

Problem Novelty: In contrast to traditional itemset mining, we
consider items that are structured with rich features. Further, while
the user interaction with the item could be observed, the corre-
sponding user interaction with features is typically hidden. For ex-
ample, while New York Times knows which articles the user read,
it does not know why (what features in the article led the user to
read them). Our objective in this paper is to identify frequent pat-
terns over these “hidden” interactions. Notice that identifying the
set of articles most frequently read belong to the traditional itemset
mining problem. However, using the entire article transaction log
to identify the user’s favorite topic is a featureset mining problem.
This problem is quite challenging as we have to identify the most
important feature without any explicit feedback from the user.
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Figure 1: Hierarchical Representation of Transactions over
Structured Items

Consider Figure 1 that represents a small dataset of 2 item trans-
actions {T1, T2}. For simplicity, we assume that each transaction
contains only one item and that the user consumes an item due to a
single feature. The frequency of the transaction is specified above
it. T1 has been observed 100,000 times while T2 was observed
1000 times. The dataset has two items {i1, i2} and three features
{f1, f2, f3}. The set of items in a transaction and the set of fea-
tures present in an item are both observable. The blue arrows con-
nect the transactions to the set of items while black arrows connect
structured items to their features. The red dotted arrows highlight
the feature which caused the user to consume the corresponding
item. For example, the user consumed i1 due to f1. While the solid
arrows are observable, the dotted ones are not. Hence the major
challenge of FFM is to identify that f1 is a frequent feature instead
of f2 without any explicit feedback from user.

1.2 Challenges
We now consider the various challenges in the general FFM prob-

lem where, an item could be consumed by a user due to any arbi-
trary subset of its features. Further, the rationale for different users
to consume the same item could be very different. For instance, on
New York Times, one user may read an Sports section article due to
of its coverage of games while another user may read the same ar-
ticle for its coverage of the players involved. Of course, user trans-
actions on New York Times do not provide any information about
why an item was consumed. This hidden mapping between items
and features makes identifying frequent featuresets extremely chal-
lenging.

It might seem that running an existing frequent itemset mining
algorithm by aggregating the features could identify frequent fea-
turesets. For example, item i1 in transaction T1 is replaced {f1, f2}
while i2 in T2 is replaced by {f2, f3}. This approach, while intu-
itive, results in potentially incorrect frequent featureset due to a
subtle pitfall - the most frequent feature is not necessarily the most
important one.

Frequency Vs Importance. Using the dataset from Figure 1,
this results in f2 being the most frequent featureset followed by
f1. However, we can make a simple argument to negate this con-
clusion. If feature f2 was indeed the dominant feature, then more
users would have also consumed item i2. Instead, it languishes with
only 1000 transactions. Hence it is clear that the feature f1 must
have a higher importance than f2 and must have been declared the
most frequent featureset. The root cause for the incorrect conclu-
sion is due to the fact that traditional itemset mining approaches
considers all the features of the items in transaction instead of con-
sidering only the subset for which the user picked those items. We
highlight other pitfalls of straightforward adaptations of existing
deterministic and probabilistic frequent itemset mining algorithms
in Section 4.

Combinatorial Explosion. Another major problem is that of
combinatorial explosion of potential featuresets that could have
generated the item transaction database. Consider for instance a
single transaction of ten items with 5 features each. If the features
of items in the transaction do not overlap, then are there are 50 dif-
ferent features. Even if we assumed that a user picked an item for
a single feature, there are 510 potential featuresets that could have
generated this item transaction. If we allow the user to choose an
item over any subset of its features, then there are exactly 25 feature
combinations to pick it. Thus, there are

(
25
)10

= 250 hidden fea-
ture transactions that would generated the single item transaction.

1.3 Outline of Our Approach
Intuitively, any deterministic approach could not be used to solve

the FFM problem. Unlike deterministic frequent itemset mining
where the presence of an item in a transaction is known with cer-
tainty, it is hard to say which subset of features of that item lead the
user to pick that item in the transaction. The difficulty comes from
the fact that the presence of a feature in a transaction depends on
whether the user was interested in that feature while generating the
transaction rather than on the presence of that feature in one of the
items of the transaction.

We tackle this problem in two stages. First, we identify the po-
tential reasons (featuresets) for which an item was consumed in the
context of the transaction/user. Due to the limited user-item inter-
action information, it is unlikely that we could identify the feature-
set that generated the transaction with any certainty. Given an item
transaction T , we enumerate the various featuresets that could have
generated it. We introduce a novel featureset uncertainty model to
represent the likelihood for each of the candidate featuresets to have
generated T . Identifying this likelihood is the first fundamental
problem we solve in this paper. We use constrained least squares
based approach to estimate the likelihood. Our second problem
seeks to mine the frequent featuresets under the featureset uncer-
tain model. We propose an efficient dynamic programming based
approach for this purpose. In an effort to improve the performance,
we also designed a scalable “approximation” algorithm with only a
marginal decrease in accuracy.

Our experimental results over a number of large datasets show
that the frequent featuresets identified by our algorithms have high
qualitative score under a number of popular interestingness mea-
sures. Additionally, in contrast to traditional itemset mining, the
availability of user information allows us to perform personalized
featureset mining.

Summary of Contributions.

• We introduce and motivate the novel problem of frequent fea-
tureset mining for transactions over structured items.

• We describe various approaches to map item transactions to
feature transactions and highlight their pros and cons. We
also make observations about the subtle issues that render
adaptations of traditional itemset mining inapplicable.

• We introduce a novel featureset uncertainty model and de-
velop an efficient algorithm to estimate the likelihood that a
featureset generated an item transaction.

• We develop diverse algorithms to mine frequent featuresets
under featureset uncertainty model .

• We present a thorough experimental evaluation of our algo-
rithms and study their scalability using large synthetic datasets.
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2. FRAMEWORK AND PROBLEM DEFI-
NITION

In this section, we define the data model and the necessary back-
ground. We formally state the two central problems addressed in
the paper - estimating the likelihood that a featureset generated an
item transaction and using this information to mine frequent fea-
turesets. We then describe two variants that occur in practice de-
pending on whether the user who made the transactions is identifi-
able.

2.1 Framework
Structured Items and Features. Let I = {I1, I2, . . . , In} be a
universe of structured items. Each item I ∈ I could be described
as a set of features. A feature is a property of the item whose pres-
ence or absence can be observed. Let F = {f1, f2, . . . , fm} be
the universe of all features. An item can be equivalently considered
as a tuple over boolean attributes {f1, f2, . . . , fm}. Given an arbi-
trary item I and feature f , I[f ] = 1 if I contains f and 0 otherwise.
We represent the set of features of an item I by features(I).

As an example, consider an online news website such as New
York Times. Each news article can be considered as a structured
item. I is the entire news article catalog. The set of named entities
present in an article can be considered as its features. F is the set
of all the named entities covered by the catalog.

A non empty set of items, X ⊆ I is called an itemset. An
itemset is called as l-itemset if it has exactly l items. Similarly, a
featureset F ⊆ F is a non empty set of features. A l-featureset
has exactly l features. An item I is said to contain a featureset F ,
iff ∀f ∈ F, I[f ] = 1. We will henceforth use the word item to refer
to structured item.

Item Transactions. Let IT = {T1, T2, . . . , TN} be a database
of item transactions, |IT |=N. We represent each transaction as a
triple< tid, uid,X >, where tid is the transaction identifier, uid is
the user identifier who made the transaction andX ⊆I is the set of
items in the transaction. A transaction is said to contain an itemset
if all the items in the itemset are also present in the transaction.
Further, the notation features(T ) for a transaction T returns the
set of features that are present in at least one item in T .

User-Transaction Interaction Information. We consider the database
of item transactions IT to be available at two levels of granular-
ity - aggregate and fine-grained. Under the aggregate granularity,
the only information available are the transaction identifier and the
items contained in the transaction. Under the fine-grained granu-
larity, we also know the user id that identifies the user who made
the transaction. This additional information allows us to group the
transactions by users. We hasten to add that our algorithms do not
require any additional profile information about the user. Under
aggregate granularity, we would consider all the items to be per-
formed by a single “average” user and use the same user identifier
for all item transactions.

Such interaction can be represented via an aggregate interac-
tion vector v where each component corresponds to the number of
times a particular transaction was made. If the user who made the
transaction is known, then we could compute, for each user u, an
individual interaction vector vu where each component provides
the number of times u performed a given transaction. The inter-
action vector is normalized and has non-negative numbers that add
upto 1.

Frequent Itemset Mining. The support of an itemset X , denoted
by sup(X), is the number of transactions in whichX appears in the
transaction database. Let minSup ∈ (0, N ] be an integer, where N

is the number of transactions. An itemset X is considered frequent
if sup(X) > minSup.

Typically, items occurring in a transaction are considered to be
certain. In other words, an item exists in a transaction or it doesn’t.
However, there are scenarios where the presence of an item is un-
certain and quantified probabilistically [2, 6]. For example, in our
paper, we observe only the item transaction created by the user.
However, the underlying featureset that generated the item transac-
tion is typically unknown. A natural model to manage such uncer-
tainty is to assign values to various featuresets based on the likeli-
hood that they have created the item transaction.
Uncertain Transaction Databases. An uncertain item I [2] is one
whose presence in an item transaction T is provided by its exis-
tential probability P (I ∈ T ) ∈ [0, 1]. In contrast, a certain item
either occurs or does not in a transaction. i.e. P (I ∈ T ) ∈ {0, 1}.
An uncertain transaction contains uncertain items. Finally, an un-
certain transaction database [6] contains uncertain transactions.
Probabilistic Frequent Itemset Mining. We can see that the sup-
port of an itemset X , sup(X) is a random variable in uncertain
databases and no longer has a constant value. There are multiple
candidate definitions that extend support of an itemset to uncertain
scenario [9, 7]. However, [20] showed the two most popular def-
initions (based on expected support and frequent probability) have
a tight correlation between them. Given an uncertain database, a
minimum support minSup and an itemset X , the frequent probabil-
ity of X is defined as:

Pr(X) = Pr{sup(X) ≥ minSup} (1)

X is considered to be a probabilistic frequent itemset if Pr(X) ≥
minSup is at least a constant probabilistic frequent threshold of
pft .
Running Example. Table 1 describes a simple dataset with n = 3
items, m = 4 features and N = 3 transactions that will serve as a
running example to highlight our various algorithms.

Table 1: Running Example
TId Item {features} Count
T1 I1{f1, f3}, I2{f3, f4} 50
T2 I3{f2, f3}, I2{f3, f4} 100
T3 I1{f1, f3}, I2{f3, f4}, I3{f2, f3} 1000

2.2 Featureset Uncertainty Model
Model for Generating Item Transactions We first present an in-
tuitive generative model for item transaction using their component
features. As we argued in the introduction, a user picks an item due
to a subset of its features. Such a behavior extends for each item in
a transaction. To generate an item transaction T , the user first picks
the size of the transaction, |T |. Each item in transaction is chosen
as follows : the user first picks a featureset F ⊆ F according to a
probability distribution. Then among the items that contain all the
features in featureset F , she selects an item uniformly at random.
This process is repeated |T | times to generate the item transaction.
Generating Featureset. Recall that each item in a transaction was
chosen by the user due to a subset of its features. Given a trans-
action T = {I1, I2, . . . , I|T |}, let Fi be the subset of features for
which item Ii was chosen. We refer to the union of these featuresets
GT = ∪|T |i=1Fi as the generating featureset for the item transaction
T . In other words, GT is the “ground-truth” that generated T . Ide-
ally, if our aim is to identify the frequent featuresets, the frequent
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mining algorithm must be run over GT for each item transaction
T ∈ IT .
Featureset Uncertainty Model. However, in practice, it is un-
likely that we will be able to ascertain the featureset that generated
a transaction deterministically. Further, for any given item trans-
action T , there are numerous possible featuresets that could have
generated T . The set of all featuresets that could have generated T
is given by, GT = {GT |GT ⊆ F ∧ |GT ∩ I| > 0 ∀I ∈ T}.

Given a single transaction T and no additional information, we
cannot ascertain which of the featureset FT ∈ GT could have gen-
erated T . In our paper, we associate with each featureset the prob-
ability that it could have generated the transaction given other item
transactions. Of course, given a single item transaction T , each
generating featureset in GT has a uniform probability (as we do not
possess adequate information to claim otherwise). However, given
multiple item transactions, it is possible to assign different likeli-
hoods to each generating featureset. Hence, frequent featuresets
can be obtained by running uncertain frequent mining algorithms
over FT .
Featureset Likelihood. The likelihood of a featuresetF for a given
transaction T is defined as the conditional probability that F was
the generating featureset for T given the entire item transaction
dataset I and all possible generating featureset GT for T . The
featureset likelihood of transaction is a probability distribution over
all featuresets in its generating featureset. Of course, any featureset
not in GT will have a likelihood of 0. We would like to note that
the likelihood of a featureset formalizes the notion of importance
first described in Introduction.

PROBLEM 1 (Featureset Likelihood Estimation: FLE). Given
an item transaction database IT containing user transactions over
structured items and aggregate interaction vector v, estimate the
featureset likelihood for each transaction T ∈ IT .

2.3 Frequent Featureset Mining
Once the relative likelihood of the generating featuresets of an

item transaction are identified, the next step is to use this informa-
tion to mine frequent featuresets.

PROBLEM 2 (Frequent Featureset Mining : FFM). Given an
item transaction database IT containing user transactions over
structured items, the corresponding featureset likelihood and min-
imum support threshold minSup, identify the set of frequent fea-
turesets with expected support of at least minSup.

3. OVERVIEW OF OUR APPROACH
In this subsection, we describe the high level components of our

approach that also provide a roadmap to the rest of the technical
sections.
Challenge I: Enumerating Generating Featuresets. The first
major challenge is to generate all possible featuresets that could
have generated a given item transaction. However, even for small
item transaction, this number could be exponential. Hence we
make a simplifying assumption by noting that most users consume
an item due to a small subset of its features. Recall that each item
in the transaction must have at least one feature in the generating
featureset. If we consider each item as a set with its feature as the
elements, then a candidate generating featureset is a hitting set (a
set of elements that has non empty intersection with all the other
sets [12]). Section 4 talks about generating featuresets in more de-
tail.
Challenge II: Identifying Likelihood of Generating Featuresets.
Once we have identified the generating featuresets for each item

transaction in the dataset, we represent them as a bipartite graph
where one partition corresponds to item transactions while the other
partition corresponds to featuresets. An edge exists between a trans-
action T and a featureset F if F was a generating featureset for T .
Given this bipartite graph, the next challenge is to identify the rel-
ative likelihood of each featureset to generate the item transaction.
We treat this as a constrained optimization problem, the solution
of which allows us to order the generating featuresets of an item
transaction based on the likelihood that it generated the transac-
tion. Section 4 talks about identifying the likelihood of featuresets
in more detail.

Challenge III: Mining Frequent Featuresets. Once the relative
likelihood of the generating featuresets of an item transaction are
identified, the next step is to identify the frequent featuresets. We
first describe an exact but inefficient algorithm followed a much
more efficient but approximate variant. Section 5 talks about min-
ing featuresets in more detail.

Challenge IV: Scaling Featureset Mining. Numerous hurdles ex-
ist in each of the prior stages that hinder our ability to develop scal-
able solution for frequent featureset mining. We utilize sampling as
the key technique to achieve scalability. We propose two different
algorithms based on sampling the item transaction database and
sampling the item transaction-featureset bipartite graph that pro-
vide a nice tradeoff between performance and quality . Section 6
talks about our scalability approaches.

4. BASELINE TECHNIQUES
In this section, we describe two intuitive baseline ideas for solv-

ing the frequent featureset mining problem and point out their re-
spective pitfalls which motivate our proposed approach. Both tech-
niques solve the problem by transforming the item transaction database
into a feature transaction database and utilize existing itemset min-
ing algorithms.

4.1 Adapting Frequent Itemset Mining Algo-
rithms.

In this subsection, we describe two approaches that transform
the certain item transaction database into another certain feature
transaction database.

Consider an obvious approach that transforms item transactions
into transactions over features by using the union of features present
in all the items in the transaction. This approach could lead to inac-
curate results as it ignores two important facts: (a) The frequency
of features within a transaction. (b) The combination of features
for which a user picked the item. If multiple items in a given trans-
action contain the same feature (for example, multiple articles read
by a user contains the topic Egypt), then it is highly likely that this
feature must be given a higher weight. Taking the union of features
fails in capturing this valuable information. Second, this approach
considers all the features of the items in transaction instead of con-
sidering only the subset for which the user picked those items.

However, even assigning a weight based on its frequency does
not solve the issue as we show below. Consider a more sophis-
ticated approach where each item transaction T is converted to a
feature transaction FT by taking the union of the features of all
items in T . In other words, FT = {features(I)|I ∈ T}. Once
the feature transaction database is obtained, we can apply classical
frequent itemset mining algorithms such as APriori[3] with appro-
priately chosen threshold. However, as pointed out in the example
from Section 1, this also suffers from a subtle pitfall of mistaking
frequency for importance.
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4.2 Adapting Probabilistic Itemset Mining Al-
gorithms.

In this subsection, we describe an intuitive approach that trans-
form the certain item transaction database into an uncertain feature
transaction database.

Attribute Uncertainty Model. The most basic model for describ-
ing an uncertain transaction database is the attribute uncertainty
model [17]. Under this model, each attribute of the tuple is asso-
ciated with a probability. If we consider a transaction as a tuple
where the attributes are {I1, I2, . . . , Ik}, then each item I ∈ I ex-
ists in T with an existential probability P (I ∈ T ). This model
assumes that the presence of an item is independent of other items
in the transaction.

Tag-Cloud Approach. This approach works by transforming the
certain item transaction database into an uncertain feature transac-
tion database. This is an adaptation of the technique used in [7].
We call this as a tag cloud [21] based approach (as tag clouds in
social media are often generated this way). Each item transaction
T is converted to an uncertain feature transaction FT where the ex-
istential probability of a feature is computed as the ratio of number
of items in which it is present to the total number of all items in
the transaction. Formally, FT = {f :

∑
I∈T |{f}∩features(I)|

|T | |f ∈
features(T )}. Once the feature transaction database is obtained,
we can apply any probabilistic frequent itemset mining algorithm
such as UAPriori[9] with appropriately chosen threshold.

While more sophisticated that the previous approach, this algo-
rithm still suffers from the flaws described in the introduction. It
treats the most frequent feature(set) as also the most important one.
As our counter example pointed out this may not always be valid.

5. COMPUTING FEATURESET LIKELIHOOD
Recall from Section 2 that each item in a transaction was cho-

sen by a user due to a subset of its features. The collection of
all such subsets for the entire transaction is its generating feature-
set. If we have access to this information, frequent featuresets can
be obtained by running traditional frequent mining over it. How-
ever, since this information is not available, we have to generate
the possible featuresets and then evaluate their likelihood to be a
generating featureset. We tackle this problem in two stages. We
first generate all possible candidate featuresets that could have gen-
erated the transaction and then using this information estimate the
likelihood for each transaction.

5.1 Generating Candidate Featuresets
In this subsection, our objective is to enumerate all possible fea-

turesets that could have generated the transaction. Since each trans-
action could have an exponential number of generating featuresets,
we use the idea of minimal hitting sets to substantially reduce this
number.

Hitting Sets and Generating Featuresets. A key idea in reduc-
ing the combinatorial explosion comes from observing the close
relationship between generating featuresets and hitting sets. No-
tice that for a featureset to be a potential generating featureset, it
has to necessarily have at least one feature from each item in the
transaction.

Given a finite set S (also called as universal set) and a collection
C of subsets of S, the hitting set for C is a subset S′ ⊆ S such
that it contains at least one element from each subset in C [12]. A
hitting set is minimal if none of its proper subsets are also hitting
sets. If we treat each item as a set of features and the union of all
item features of the transaction as the universal set, then it is easy to

see that any generating featuresets is also a hitting set. A further re-
duction in search space of featuresets can be achieved by observing
that typically, users choose an item due to a small number of its fea-
tures. This parsimonious behavior has been exploited in multiple
prior work to generate concise models. This observation motivates
us to identify minimal generating featuresets by using their relation
to minimal hitting sets[16, 14].

Running Example. We can express the relation between transac-
tions and the featuresets as a bipartite graph. The transactions form
one partition while featuresets form another. An edge exists be-
tween a featureset F and a transaction T when F is a generating
featureset for T . Using our running example, this bipartite graph
would have 3 transactions and 11 featuresets. However, if we use
the minimal hitting set requirement, the graph has just 4 featuresets.
Figure 2 shows the resulting graph.

T1(50)

T2(100)

{f3}

{f1,f4}

T3(1000) {f2,f4}

{f1,f2,f4}

Figure 2: Bipartite Graph with Transaction and Minimal Gen-
erating Featuresets

Enumerating Minimal Generating Featuresets.
We describe a simple randomized algorithm to identify minimal

hitting sets containing frequent features with high probability. The
algorithm starts with an empty candidate hitting set. It then ran-
domly picks a feature and adds it to the candidate. This process is
repeated till all items in the transaction are covered resulting in a
minimal generating featureset. Each feature is picked with prob-
ability proportional to its frequency in uncovered items. In other
words, a feature that is present in multiple items has a higher likeli-
hood of being chosen. This enumeration algorithm could be termi-
nated after each featureset in the collection is returned by at least
two different invocation of the randomized algorithm This heuristic
is also referred to as Good-Turing test. Consider a simple invoca-
tion over transaction T3 = I1{f1, f3}, I2{f3, f4}, I3{f2, f3}. The
algorithm starts with an empty set. Suppose it picked feature f3 -
it will immediately terminate as all items are covered. Suppose it
picked feature f1. Then items I2, I3 are not covered. Since f3 oc-
curs in both items it is picked with probability 2

4
= 1

2
while f2 and

f4 are picked with probability 1
4

in the next iteration.

Complexity of Enumerating Minimal Hitting Sets. Identifying a
single minimal hitting set requires a time complexity that is linear
in the size of all features. However, counting all minimal hitting
sets is #P-Complete [11]. It is possible to derive tighter bounds with
additional information such as the maximum number of features in
any item and the maximum transaction size in the dataset by using
the idea of parameterized complexity [11].

5.2 Estimating Featureset Likelihood
Given an item transaction T , Section 5.1 identifies the set of fea-

turesets GT , that could have generated it. However, given the lim-
ited information, we do not know the actual generating featureset.
We used the featureset uncertainty model to express the probability
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that a given featureset generated the transaction T . In this section,
we provide an optimization formulation to compute these values.

User-Transaction Interaction Information. Users generate trans-
actions while interacting with items. Such interactions could be
represented differently at aggregate or individual levels. At the ag-
gregate level, we do not have access to the id of user who created
the transaction. Instead, we treat all transactions to be performed by
an “average” user. Such interaction can be represented via an ag-
gregate interaction vector v where each component corresponds to
the number of times a particular transaction was made. If the user
who made the transaction is known, then we could compute, for
each user u, an individual interaction vector vu where each com-
ponent provides the number of times u performed a given trans-
action. The interaction vector is normalized and has non-negative
numbers that add upto 1. For the rest of the section, we assume the
average user case while in §6, we describe how to customize the
optimization formulation in the presence of user identity.

Transaction-Featureset Transition Matrix. The output of Sec-
tion 5.1 can be succinctly summarized as a bipartite graph where
transactions form one partition while featuresets form another. An
edge exists between a featureset F and a transaction T , if F could
have generated T . Figure 2 shows the graph for our running exam-
ple.

We assume a column stochastic matrix T in which rows corre-
spond to transactions while columns are the featuresets. Each cell
Tij provides the probability that an average user would generate
the transaction Ti if she is interested in featureset Fj . We can con-
struct a boolean matrix T that represents the transaction-featureset
bipartite graph where T ij = 1 if transaction Ti could have been
generated by featureset Fj . We also assume that if a featureset F
could not have generated a transaction T , then the probability that
a user would have generated T to be 0. In other words, T ≤ T .
There are multiple ways to construct T from T . For example, we
can assume a uniform distribution where, given a featureset F , all
the transaction that could have been generated by F are chosen uni-
formly at random. Of course, it is possible to have a non-uniform
distribution if we have additional domain knowledge (for example
- given an actor, users are more likely to see a movie where the
actor starred than one where he doesnt). Our likelihood estimation
method is oblivious to the distribution of T .

Featureset Likelihood Vector. As we described in Section 4, it is
not possible to accurately identify the likelihood of featureset for
a transaction in isolation. It is necessary to utilize the featuresets
of other transactions for this purpose. As an example, given a sin-
gle movie, it is not possible to confidently ascertain which feature
caused an user to watch it. However, if we see other movies by
the same actor (and with high transaction count), our confidence
increases. Due to this reason, we identify the featureset likelihood
globally (across all transactions) instead of a single transaction. In-
tuitively, the global featureset likelihood vector w can be thought
of as the “featureset preference vector” of a typical user. In other
words, this provides a probability distribution over various feature-
sets. Frequent featuresets will have a higher value than less fre-
quent featuresets. This vector is stochastic (all entries are non-zero
and sum upto 1).

Given the prior notations, we can now formally respecify our
generative model for item transactions from Section 2. A typical
user has a “featureset-preference” vector that describes a distribu-
tion over the featuresets. The user chooses a featureset using that
distribution. Once the featureset Fj is choosen, the user looks at the
corresponding column in T and chooses a transaction with proba-
bility proportional to Tij . Intuitively, the relationship between var-

ious entities can be summarized by:

T w = v (2)

Computing Global Featureset Likelihood. From Section 5.1, we
obtained the transaction-featureset bipartite graph. Using this infor-
mation, we can compute the transaction-feaureset transition matrix
T by assuming uniform distribution. We are also provided with
the aggregate interaction vector v. Our aim now is to identify the
featureset likelihood vector w.

Notice that typically, the number of featuresets far outnumber
the number of trasactions. Hence the linear system of equations
expressed by Equation 2 is overdetermined and has no solution.
We can define an error metric based on the reconstruction error,
Error(v − T w). For the purpose of our paper, we use the L2

error metric. Our problem boils to finding the best w vector that
minimizes ||v − T w||2.

Algorithm 1 FFM-AVG
1: Input: IT
2: Compute aggregate interaction vector v from IT
3: ∀T ∈ IT , generate candidate featuresets
4: Form transction-featureset bipartite graph T and estimate T
5: constraints = { ∀i wi ≥ 0, ||w||1 = 1 }
6: w = argmin

w
||v − T w||2 subject to constraints

7: return w

The solution vector w must minimize the reconstruction error
and must also satisfy some constraints. Algorithm 1 provides a
pseudocode for the problem. We model this problem as a con-
strained optimization problem with non negativity and stochastic
constraints. Specifically, the optimization with L2 metric corre-
sponds to a constrained least squares problem with stochasticity
constraints. Due to how the objective function is defined, this falls
under a subset of convex optimization problem for which optimal
solutions can be computed efficiently.

Complexity. The constrained optimization problem has a worst
case complexity of O(N3). However, there exist very efficient it-
erative algorithms that can obtain the optimal solution in few itera-
tions [8].

6. MINING FREQUENT FEATURESETS
Let us recap what we have achieved so far. We started with a

database of item transactions with the objective of identifying fre-
quent featuresets. Using a novel uncertainty model, we expressed
each item transaction as a collection of featuresets that could have
generated it. Using this transaction-featureset bipartite graph as a
base, we used a constrained least squares approach to identify the
global likelihood for each featureset. In this section, we use this
information to identify the frequent featuresets. We first describe
an algorithm that performs mining directly over the featureset un-
certainty model. We then design an efficient yet approximate al-
gorithm that transforms the featuresets and their likelihoods into
feature transactions which can then passed to any state of the art
probabilistic itemset mining algorithms.

6.1 Exact Algorithm for Mining Frequent Fea-
turesets

In this subsection, we describe an exact algorithm FFM-EXACT
for identifying all frequent featuresets. This algorithm takes as in-
put a single featureset F and computes whether F is a probabilistic
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frequent featureset. Our algorithm is based on dynamic program-
ming and runs in polynomial time and is adapted from the approach
first described in [22].
Frequent Featuresets and Probabilistic Heavy Hitters. There
exists a close parallel between the concept of frequent featureset
and that of probabilistic heavy hitters in uncertain data [22]. Given
an uncertain database, an item t is considered as a (φ, τ)-probabilistic
heavy hitter if the probability that t is heavy hitter (i.e. occurs more
than fraction of φ in a possible world) is greater than τ . We can
immediately see that if we treat each featureset F as an item (and
compress other featuresets of a transaction to F ), then verifying
whether F is a (sup(X), pft)-heavy hitter corresponds to finding
if the featureset is probabilistically frequent. Our exact algorithm
FFM-EXACT takes this approach.

This algorithm takes as input a single featureset F and the per-
transaction featureset likelihood estimated from Section 5. It then
converts each item transaction T into an uncertain transaction with
two possible items F and F . The existential probability (for a fea-
tureset F and for a transaction T ) PrT (F ) is set to estimated fea-
tureset likelihood if F was a generating featureset of T . Else the
value was set to 0. The existential probability of F is computed as
1− PrT (F ).

Given this information, we could use the algorithm in [22] to es-
timate the probability that F is a frequent itemset. This algorithm
is based on dynamic programming. We create a two dimensional
table BF with N rows and N columns. The cell BF (i, j) is in-
terpreted as the probability that F was the generating featureset in
exactly i item transactions out of the first j item transactions. Using
this interpretation, the table can be filled as follows.
Base Case:
BF [0, 0] = 1

BF [i, 0] = 0 (i ≥ 1)

BF [0, j] =

{
BF [0, j − 1] if F ∈ T, j ≥ 1

BF [0, j − 1](1− PrTj (F )) if F 6∈ T, j ≥ 1

(3)

Induction Step:

BF [i, j] =


BF [i, j − 1] if F 6∈ T
BF [i, j − 1](1− PrTj (F ))+

BF [i− 1, j − 1]PrTj (F ) if F ∈ T
(4)

Once the table is filled the probability that F is a frequent fea-
tureset can be computed as in [22]. This step is repeated for each
featureset and runs in O(N2) per featureset.

6.2 Approximate Algorithm for Mining Fre-
quent Featuresets

While the previous algorithm is exact and produces accurate re-
sults, it is prohibitively expensive. In this subsection, we design
an approximate algorithm FFM-APPROX by sacrificing some ac-
curacy in favor of dramatically improved efficiency.
From Generating Featuresets to Feature Transactions. Our next
step is to use this collection of transactions and the featuresets with
likelihood weights to identify the frequent featuresets. Unfortu-
nately, there exist no algorithm to identify the frequent featuresets.
Most uncertain frequent mining problems work over attribute un-
certainty model necessitating a transformation from featureset un-
certainty model to attribute uncertainty model. This transforma-
tion might seem counterintuitive - we are moving from featureset
uncertainty model (which is quite expressive), to a simpler uncer-
tainty model. Further, it might seem that we are abandoning all

the results of our expensive pre-processing. However, as out later
experiments show, performing frequent featureset mining over this
relaxed dataset provides a higher quality results than transforming
to attribute uncertainty model directly.

In this section, we will focus on taking item transactions along
with their candidate generating featuresets into a simpler feature
transaction where each feature has an existential probability asso-
ciated with it. Higher the probability, the more likely its corre-
sponding feature to generate more items in the item transaction.

It is possible to generate feature transactions at multiple levels of
granularity.

Average User - Per Transaction. This is the simplest transfor-
mation and the most generic. This is applicable in the case where
the original item transaction database did not have any mechanism
to identify the user who made the transaction. Further, in this ap-
proach we convert each item transaction into a corresponding fea-
ture transaction.

Algorithm 2 FFM-APPROX
1: Input: G:< T ,F ,E ,P > - bipartite graph where P represents

the likelihood distribution on F
2: FT = {}
3: for all T ∈ IT do
4: Collect generating featuresets GFT ={Fi ∈ F — (F, T ) ∈

E}
5: Normalize the weights of the generating featuresets, ∀Fi ∈

GFT , P (Fi) = P (Fi)/
∑

Fj∈GFT
P (Fj)

6: Initialize a feature transaction, TmpFT = ∪Fi|Fi ∈ GFT

7: Update weights of individual features, ∀fi ∈ TmpFT ,
fi.weight =

∑
Fj∈GFT

P (Fj) ∗ Fj(fi) if fi ∈ Fj , 0 oth-
erwise

8: FT = FT ∪ {TmpFT }
9: end for

10: Invoke uncertain frequent mining on F

Algorithm 2 works as follows. First, for each item transaction
T , we isolate all its generating featuresets from the transaction-
featureset bipartite graph. We then normalize the featureset like-
lihoods so that they sum up to 1. The updated values provide, for
each featureset, the probability that it could have generated T given
other transactions. We then convert this to a feature transaction as
follows. For each feature f in T , we identify all the generating fea-
turesets of T in which it is part of. The existential probability of the
feature f is given by the summation of the normalized likelihoods
of the relevant featuresets.

Running Example. Recall that Figure 2 gave the minimal gen-
erating transactions for the dataset. After running the constrained
optimization, the global likelihood for each featureset is computed.
Figure 3 shows an arbitrary subgraph for illustration purposes.

T1(50) {f1,f3} (0.45)

{f1,f4} (0.34)

Figure 3: Bipartite Graph with Featureset Probabilities
Let us convert item transaction T1 to a feature transaction. The

featuresets associated with T1 are {f1, f3} and {f1, f4} with val-
ues 0.45 and 0.34 respectively. We first normalize the values so
that updated values are 0.569 and 0.431. In other words, the first
featureset had a likelihood of 0.569 to have generated T1. We now
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create the feature transaction from these normalized values. In this
case, {f1} was present in both featuresets, its existential probabil-
ity is 0.569 + 0.431 = 1. For the other features, their existential
probabilities are computed based on the single featureset they each
belonged to. The final feature transaction is {f1 : 1.0, f3 : 0.569,
f4 : 0.431}.

Per User - Per Transaction. If we have information that could
identify the user who made the transactions, we could design a
user-specific feature transaction. In this approach, we start with
the subset of item transactions performed by the user. Then we
generate the candidate featuresets, identify their likelihood and use
the previous method to convert to feature transaction. The major
advantage is that if there is an item transactions made by two dif-
ferent users, the previous method would generate identical feature
transaction. However, in this case, they could potentially generate
different feature transactions.

Per User. Traditional frequent featuresets are executed over the en-
tire dataset. However, it is also possible to identify frequent feature-
sets across users. A major advantage is that this approach provides
featuresets popular among a large fraction of the user population
as opposed to featurests popular among a large fraction of transac-
tions. This approach alleviates the effect of users who make a lot of
identical transactions hence generating irrelevant frequent feature-
sets. We start from the subset of item transactions performed by
the user. We then identify the candidate featuresets for all transac-
tions and identify their global likelihood. Notice that the likelihood
Then, we create a single feature transaction for the user. For each
feature that is present in some transaction made by the user, its ex-
istential probability is the sum of featuresets in which the featureset
is present.

Frequent Featureset Mining. Once we have converted the item
transactions into feature transactions, they could be passed to any
state-of-the-art uncertain frequent itemset mining algorithms [9,
15, 1] to obtain frequent featuresets. As the experiment section will
confirm, the featuresets obtained are of higher quality than direct
adaptations of certain or uncertain frequent itemset algorithms.

7. SCALING FEATURESET MINING
The previous sections described the various stages involved in

taking a dataset of item transactions and processing it to identify
the frequent featuresets. These algorithms are feasible for datasets
with a relatively small number of features or items. Also recall
from §5 that the worst case complexity of finding the likelihood is
cubic in the size of transactions. In this section, we describe how
to overcome the two major scalability challenges - large number of
candidate generating featuresets and large size of item transaction
databases. Surprisingly, the solution to both the problem rely on a
common trick - sampling.

7.1 Sampling Transaction-Featureset Bipartite
Graph.

Recall that one of the major challenges in identifying frequent
featuresets is to enumerate all the major candidate featuresets of
each transaction. This was similar to enumerating all the minimal
hitting sets. In the worst case, this number could be exponential.
This issue is amplified by the fact that the same process has to re-
peat for each item transaction in the database. Hence, in order to
scale the algorithm, we have to identify the most important feature-
sets and retain only them. Any featureset that does not have a high
likelihood could be removed.

We use a combination of heuristics to scale the algorithm. First,
we relax the constraint that the generating featureset has to be min-
imal. This might seem counterintuitive as the number of non min-
imal generating featuresets far outnumbers that of minimal ones.
However, this relaxation allows us to build featuresets that are si-
multaneousaly related to multiple transactions. We adapt the ex-
isting randomized algorithms described in §5.1 for this purpose.
Given the expected support threshold, we identify the minimum
number of transactions that any candidate generating featureset has
to cover. For example, it might be the case that for a featureset to
be frequent, it has to cover at least 100 transactions. The heuristic
starts with a hitting set containing all the features in F . This is ob-
viously a valid featureset touching all transactions. We randomly
drop features from it till the number of transactions it covers reach
the threshold (say 100). We repeat the process as long as necessary
to cover all the transactions in the database. We can observe that
each iteration of this approach results in a featureset that covers at
least 100 transactions. These featuresets also contains features that
are, intuitively, more likely to be in the final frequent featuresets. A
bottom-up variant of this heuristic is also possible where we start
with an empty set and add features till it covers at least 100 transac-
tions. Refer to Algorithm 3 for pseudocode. This approach, in the
worst case, degenerates to the algorithms we described in previous
sections.
Complexity of FFM-APPROX-SAM1. From the pseudocode in
Algorithm 3, it is possible to analyze its worst case complexity.
From §5, recall that the complexity of FFM-APPROX is O(N3)
where N is the number of transactions. Other operations in the
algorithm can be ignored for asymptotic analysis. This implies
that the algorithm FFM-APPROX-SAM1 has a time complexity of
O(N3). In practice, the scalable variant is extremely efficient.

Algorithm 3 FFM-APPROX-SAM1
1: Input: G: bipartite graph, r: max featuresets, t: threshold
2: Candidate featuresetsH = {}
3: for index=1 to r do
4: Candidate hitting set hs = {}
5: randomly add features from F until hs hits at least t item

transactions
6: H = H ∪ hs
7: end for
8: G = Build-Bipartite-Graph(IT ,H)
9: w = FFM-APPROX(IT )

10: FT = FEATURE-TRAN-GEN(G)
11: FFS = frequent featuresets from (FT )
12: return FFS

7.2 Sampling Item Transactions
An orthogonal approach to scale is based on sampling the item

transaction database so as to get a smaller sample on which the
algorithms are feasible. Intuitively, we pick a random sample of
the database and run the algorithms described in previous sections
over it. If the sample obtained is representative, then the frequent
featuresets obtained with a scaled down threshold would also be
frequent in the entire database. A key issue with this sampling
strategy is the possibility of errors. Specifically, it is possible to get
both false negative (when a featureset is frequent in the database but
not in the sample) and false positive when a spurious frequentset is
frequent in the sample but not in original dataset.

There are multiple strategies to reduce the number of false pos-
itives and negatives ranging from using a lower threshold, using
multiple chunked samples instead of a single sample etc. One of
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the elegant algorithms to remove the false positives or negatives
completely is the one proposed by Toivonen et al. [19]. We adapt
a variant of this algorithm for our paper. We start with obtaining a
random sample and run our algorithms over it. Once the frequent
featuresets are identified, we collect the featuresets in the negative
border. These are featuresets that are not frequent by themselves
but all their immediate subsets are. We then make a pass over the
entire dataset and verify the expected support of all the frequent
featuresets identified from the sample and also their negative bor-
der. The set of frequent featuresets identified in the second pass are
exactly the solution to our original problem. Refer to Algorithm 4
for pseudocode.

Algorithm 4 FFM-APPROX-SAM2
1: Input: IT
2: Generate sample S from IT
3: GS = transaction-featureset bipartite graph for S
4: w = FFM-APPROX(IT )
5: FTS = FEATURE-TRAN-GEN(GS )
6: FFSS = frequent featuresets from (FTS )
7: FFS−S = Compute negative border for FFSS

8: FFS = Filter non frequent featuresets from FFSS ∪ FFS−S
9: return FFS

Complexity of FFM-APPROX-SAM2. The analysis of FFM-
APPROX-SAM2 follows from that of FFM-APPROX-SAM1. The
dominant factor is the procedure FFM-APPROX which takes time
O(N3

S). Unless the sample size is very small, this provides the time
complexity. Of course, the scalable variant is in practice extremely
efficient.

8. EXPERIMENTS
In this section, we provide an extensive experimental evaluation

of the efficiency and effectiveness of our proposals in mining hid-
den frequent featuresets on real and synthetic datasets. The exper-
imental results confirm the superiority of our approach over direct
adaptations of existing frequent itemset mining algorithms.
System Configuration. All our algorithms are implemented in
C++. Experiments were conducted on Linux Ubuntu 13.04 ma-
chine, Intel Core i5 processor, 64 bit machine with 8 GB RAM.
Timing values are taken by averaging over twenty runs.

8.1 Datasets
We used three different datasets to evaluate our algorithms. Two

of them are real-world dataset while the third is a synthetic data
allowing us to evaluate the scalability of our algorithms.
AJE dataset : This dataset consists of 2103 news articles published
between April 2012 and February 2013 on Aljazeera english (AJE)
website1 - one of the most influential news media in the MENA
region2. Each article comes with a set of comments (389k in to-
tal) posted by 35k different users from 179 different countries. We
characterized each article by its features (i.e. topics, persons and
locations) extracted using Open Calais3. We also evaluated other
entity extraction libraries such as Alchemy and Stanford NER but
found the results produced by all three services were remarkably
similar. On average, each article has 7.5 features distributed as
follows: 1.42 topics, 2.58 person names and 3.5 locations names
(countries and/or cities).
1http://www.aljazeera.com
2MENA: Middle East and North Africa
3http://www.opencalais.com/

An item transaction is defined as the set of articles commented by
a user uid on the same date d, augmented with the comments a user
posted on each article i.e. T =< tid, uid, (a1, c1), . . . (ak, ck), d >,
where ci could be the concatenation of all comments posted by uid
on ai and data d. Grouping the data by users then by dates results
in 15358 transactions. See Table 2 for further details.

AJE Ground Truth. We propose to use user comments as a proxy
to uncover the hidden features that interested a user while reading
an article. Given an article a with a set of features features(a), a
comment c posted by user u on article a, we assume that the fea-
tures that most interested the user u are those of the intersection
features(a) ∩ features(c). The ground truth for a transaction
is the set of ground truth for all articles. While this ground truth
is an approximation of the real ground truth (which ideally would
be obtained by surveying users), we found that our approach is an
efficient and automatic way to extract the ground truth. We con-
ducted an user study where we evaluated different mechanisms to
identify ground truths - our approach identified more entities than
other alternate methods. Finally, the set of ground truth frequent
featuresets (GT ) is obtained by running a deterministic frequent
itemset mining algorithm on the obtained feature transactions.

Synthetic dataset SD : The synthetic dataset was created to test
the various facets of our algorithm. It was generated in two phases.
In the first, we used IBM Quest Generator to generate 1000 struc-
tured items over 100 features with average feature size of 4. (here
dataset transaction corresponded to items while dataset items cor-
responded to features). Once the structured items are known, we
then create another dataset for the actual evaluation purposes. The
output was a collection of feature transactions that also forms the
ground truth. For each feature in the transaction, we chose the cor-
responding item (of item transaction) uniformly at random. For
eg, suppose the feature transaction was {f1, f2}. We now look at
all possible items with f1 (resp f2) and choose an item at random.
items with their presence.

Last.fm Dataset LF : Last.fm 4 is a music website where users
could listen to songs from internet radio stations or from their portable
music devices. Songs corresponds to items. Each song is described
using multitude of features including artist, genre, albums, record
labels and semi-structured information via tags. The set of songs
played by a user in a session correspond to the transaction. Last.fm
provides a scrobbling API that allows programs to send and receive
information about tracks listened. We built a Chrome extension that
used Last.fm’s API to monitor the set of tracks listened by the user.
We recruited (via Reddit5 ) more than 2000 volunteers to install our
extension. Our extension provides a gamified interface where it pe-
riodically inquires users about which of the track’s features lead
them to listen to it. The users were also allowed to enter free-form
content using tags or other detailed description. These formed the
ground truth over which our algorithms were evaluated.

Table 2: Characteristics of Dataset
Dataset #Trans. #Items #Features Avg

Len
AJE 15K 2103 459 1.5667

SD(T10I4D100K) 100K 1000 100 10
LF 40K 5644 919 18

4http://www.last.fm/
5http://www.reddit.com/
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8.2 Evaluation metrics
The evaluation of our algorithms is quite tricky due to the limited

amount of information available. Specifically, it is not makes sense
to use traditional metrics used for exact itemset mining. Instead,
we used measures that are commonly used in approximate frequent
itemset mining [13]. A brief description is given below.

Recoverability. Recoverability measures how well a pattern min-
ing algorithm recovers the ground truth featuresets (GT ). For each
ground truth featureset pattern GTi, we first identify the frequent
featureset FFSi generated by our algorithm that best matches with
it (based on the number of common features cfi they share). In
other words, the recoverability of GTi is the largest percent of an
featureset found by any pattern FFSi that is associated with GTi.
This is performed as a weighted average as matching with a larger
pattern counts much than matching with smaller patterns.

Recoverability =

∑|GT |
i=1 cfi∑|GT |

i=1 |GTi|
(5)

Spuriousness. It is possible for an algorithm to get a high recov-
erability by returning large featuresets. Spuriousness is a metric
complementary to recoverability - it measures the number of fea-
tures in the pattern that are not associated with original matching
pattern. Further, precision can be computed as 1.0-spuriousness.
For each FFS say FFSi, we first identify the ground truth fea-
tureset GTi, which share maximum number of common features
(denoted as cfi) between them. The number of spurious items for
each FFS is, |FFSi| - |cfi|. The equation to calculate the spuri-
ousness over whole FFS is given below.

Spuriousness =

∑|FF |
i=1 (|FFi| − cfi)∑|FF |

i=1 |FFi|
(6)

Significance. This metric combines both recoverability and Spuri-
ousness in the same way F-measure does with precision and recall.

Significance =
2 ∗ (Recoverability ∗ (1− Spuriousness))

(Recoverability + (1− Spuriousness)
(7)

Redundancy. This metric mitigates the effect of producing rele-
vant but redundant FFS (i.e. frequent sets that are subsets of other
frequent sets). Redundancy is measured by creating a matrix, M
of size |FFS|X|FFS|. Each entry in the matrix,ffsij denotes
the number of common items between FFSi and FFSj . Then we
compute the sum of the upper triangular matrix of M and subtract-
ing the diagonal entries to estimate the redundancy. This measure
doesn’t take the average over the number of FFS. Hence, it implic-
itly penalize if the number of FFS is too large.

Redundancy =

∑
i,j=1...|FFS|,j�i ffsij −

∑
i=1...|FFS| ffsii

2
(8)

8.3 Qualitative Evaluation
For the qualitative purposes, we test two algorithm. BASELINE

is a simple tag cloud based approach defined in Section 4. We did
not test the deterministic baseline as it consistently underperformed
BASELINE. The frequent featureset mining algorithm FFM-APPROX
treats all transactions are made by a single user. We evaluate the
exact, approximate and sampling based variants of our algorithm.
After identifying the frequent featuresets using baseline and our
algorithms, we evaluate their quality using the evaluation metrics
described previously.

Experimental Observations: Figures 4(a)-4(l) show how our
algorithms perform against baseline for the three datasets. The ma-
jor observations are as follows: (a) Our algorithms consistently out

perform BASELINE for larger value of support (b) The exact algo-
rithm FFM-EXACT have a higher score than the approximate ver-
sions. (c) The sampling based algorithms perform slightly worse
than the approximate variants. FFM-APPROX-SAM1 which is de-
signed for speed has a lower accuracy than FFM-APPROX-SAM2
that is optimized for accuracy.

We vary the minimum support from 0.1 to 0.5 and measure its
impact over the evaluation metrics. Figures 4(a), 4(b) and 4(c)
show the corresponding impact over recoverability. Higher values
of recoverability is desirable. We can see that the recoverability of
the algorithms increase as minimum support decreases. This ex-
pected behavior is due to the high number of FFS that are discov-
ered at lower values of support, increasing the number of recovered
GT . Our algorithms out performs BASELINE for higher values of
support. Figures 4(d), 4(e) and 4(f) show the spuriousness scores
achieved at different support values. A lower value of spuriousness
is desired. The figures show that our algorithms obtain a signifi-
cantly lower value of spuriousness than BASELINE. Higher values
are desirable for significance while lower values are desirable for
redundancy. Figures 4(g)-4(l) show that our algorithms have a su-
perior performance for both significance and redundancy.

8.4 Quantitative Evaluation and Scalability
Scalability. Figures 5(a)-5(c) show the runtime performance of all
our algorithms. We measure three parameters - number of trans-
actions (N ), number of items (n) and number of features (m). As
expected, the exact algorithm takes prohibitive amount of time and
for large datasets, it took more than two days. The approximate
variant is much faster than the exact version while the two sam-
pling variants are orders of magnitude faster. We can also see that
the number of transactions and features have a higher impact on
running time than the number of items. This is to be expected as
the major factor in the runtime is the number of featuresets which
are directly impacted by the number of features.

Robustness of Sampling: In this set of experiments we mea-
sure the robustness of our sampling algorithms. We utilize the
theoretical results from [19] as a heuristic to determine the mini-
mum sample size. We seek to obtain a representative sample[19]
by ensuring that, given an itemset S, the probability that the differ-
ence between S’s relative frequency in the database and the sample
varies by atmost a constant ε is less than a constant δ. Given ε, δ,
[19] provides the minimum sample size that must be obtained re-
gardless of database size. Figures 6(a)-6(c) show the robustness of
our algorithms. Once the sample size exceeds 30K (minimum suf-
ficient size for ε = δ = 0.01), the quality does not dramatically
improve with higher sample size. Figures6(a), 6(b) show the re-
sults for recoverability and Significance respectively. The results
of other metrics were similar and not included to conserve space.
Figure 6(c) shows that given a fixed sample size as suggested by
[19] is sufficient to reach a good accuracy regardless of the size of
the database.

9. RELATED WORK
While there has been extensive work on Frequent itemset mining

starting with [4], most of the proposed approaches and techniques
assume the atomicity of items and hence aim at identifying fre-
quent itemsets by mining transactions over items. To the best of
our knowledge, we are the first to solve the problem of identifying
hidden frequent featuresets by mining observed transactions using
a novel featureset uncertainty model.

Uncertain Frequent Itemset Mining. Chui and al. [9] were the
first to investigate mining frequent itemsets over uncertain transac-
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Figure 4: Qualitative Evaluation for AJE, SD and LF Datasets with Varying Minimum Support

tions. Since then, an important amount of work has been done in
this area (see [2] for a survey). There are two main approaches
for mining uncertain frequent itemsets: expected support and prob-
abilistic models, both of which consider the support as a random
variable but with different interpretations. In expected support ap-
proaches [9, 15, 1], an itemset is frequent iff its expected support
is greater or equal than a predefined threshold. Several well-known
frequent itemset mining algorithms have been adapted to deal with
the expected support such as UAPriori [9], UFP-Growth [15],
and UH-Mine [1]. On the other hand, probabilistic frequent item-
set mining approaches rely on the concept of frequentness prob-
ability which denotes the probability of an itemset support to be
greater than a predefined minimum support [7, 18]. Only itemsets
with frequentness probability greater than the minimum support are
considered as frequent. This is typically solved using dynamic pro-
gramming [7] or divide and conquer [18]. Tong et al. showed that
these two definitions are equivalent [20].

Uncertain Model in Probabilistic Database. There are three dif-
ferent models to represent uncertainty in relational databases: tuple
uncertainty, attribute uncertainty, and xtuple uncertainty. In tuple
uncertainty model, each tuple is associated with a score reflecting
the probability of that tuple to exist in the database [10]. In attribute
uncertainty model, the uncertainty is more fine grained where a
probability score is assigned to each attribute value in a tuple [17].
Notice that both models are mapped into probability distribution
over all the Possible World [5] where each Possible world is an
deterministic instance of the database. The concept of xtuples is
used in the ULDB model proposed in [6]. An xtuple could be seen
as a probability distribution over a set of mutually exclusive tuples.
Uncertain itemset mining approaches follow either the tuple uncer-
tainty model [18] where a probability score is associated with each
transaction, or attribute uncertainty model [7] where probabilities
are associated to each item in a transaction.
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Figure 5: Effect on Running Time
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Figure 6: Robustness of Sampling Algorithms

10. FINAL REMARKS
In this paper we study the novel problem of mining hidden fre-

quent featuresets from item transactions. We motivated this novel
problem with several illustrative examples and introduced a fea-
tureset uncertainty model. We developed a constrained least squares
based approach to solve the problem of learning generating feature-
set likelihoods. We also developed two heuristics based on sam-
pling to scale up our algorithm to real world problem sizes.
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