
Influential Community Search in Large Networks

RongHua Li†, Lu Qin‡, Jeffrey Xu Yu∗, and Rui Mao†

† Guangdong Province Key Laboratory of Popular High Performance Computers, Shenzhen University, China
‡Centre for QCIS, FEIT, University of Technology, Sydney, Australia

∗The Chinese University of Hong Kong, Hong Kong
{rhli,yu}@se.cuhk.edu.hk; Lu.Qin@uts.edu.au; mao@szu.edu.cn

ABSTRACT
Community search is a problem of finding densely connected sub-
graphs that satisfy the query conditions in a network, which has
attracted much attention in recent years. However, all the previ-
ous studies on community search do not consider the influence of
a community. In this paper, we introduce a novel community mod-
el called k-influential community based on the concept of k-core,
which can capture the influence of a community. Based on the
new community model, we propose a linear-time online search al-
gorithm to find the top-r k-influential communities in a network.
To further speed up the influential community search algorithm,
we devise a linear-space index structure which supports efficient
search of the top-r k-influential communities in optimal time. We
also propose an efficient algorithm to maintain the index when the
network is frequently updated. We conduct extensive experiments
on 7 real-world large networks, and the results demonstrate the ef-
ficiency and effectiveness of the proposed methods.

1. INTRODUCTION
Many real-world networks, such as social networks and biologi-

cal networks, contain community structures. Discovering commu-
nities in a network is a fundamental problem in network science,
which has attracted much attention in recent years [12, 26]. Anoth-
er related but different problem is community search where the goal
is to find the most likely community that contains the query node
[22, 10]. The main difference between these two problems is that
the community discovery problem is to identify all communities
in a network by optimizing some pre-defined criterions [12], while
the community search problem is a query-dependent variant of the
community discovery problem, which aims to find the community
that contains the query node [22].

In all the previous studies on these problems, a community is de-
fined as a densely connected subgraph which ignores another im-
portant aspect, namely the influence (or importance) of a commu-
nity. However, in many application domains, we are interested in
finding the most influential communities. Consider the following t-
wo scenarios. Assume that Alice is a database researcher. She may
want to identify the most influential research groups from the co-
authorship network of the database community, so as to be aware of
the recent trends of database research from those influential group-
s. Another frequently encountered example is in online social net-

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivs 3.0 Unported License. To view a copy of this li
cense, visit http://creativecommons.org/licenses/byncnd/3.0/. Obtain per
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 5
Copyright 2015 VLDB Endowment 21508097/15/01.

work domain. Suppose that Bob is an online social network user.
He may want to follow the most influential groups in the social
network, so as to track the recent activities from those influential
groups. Both of these issues need to find the most influential com-
munities from a network.

In this paper, we study, for the first time, the influential com-
munity search problem in large networks. To study this issue, we
present a new community model called k-influential community
based on the well-known concept of k-core [21]. In our definition,
we model a network as an undirected graph G = (V,E) where
each node in G is associated with a weight, denoting the influence
(or importance) of the node. A community is defined as a con-
nected induced subgraph in which each node has degree at least k,
where the parameter k measures the cohesiveness of the commu-
nity. Unlike the traditional definition of k-core [21], our definition
of community is not necessary the maximal induced subgraph that
satisfies such a degree constraint (i.e., each node has degree at least
k). The influence value of a community is defined as the minimum
weight of the nodes in that community. An influential communi-
ty is one that has a large influence value. We call an influential
community with parameter k a k-influential community.

The intuition behind our definition is that each node in an influ-
ential community should have a large weight, indicating that every
member in an influential community is an influential individual.
Another possible measure of influence of a community is the aver-
age weight of all the nodes. However, this measure has a drawback
that it is not robust to the outliers, because by this measure, an in-
fluential community with a high average weight may include some
low-weight nodes (outliers) which are not influential. Therefore, in
this paper, we use the minimum weight to measure the influence
value of a community, as it captures the intuitive idea of influential
community. In addition, we require that a k-influential commu-
nity cannot be contained in a super-k-influential community with
equivalent influence value. Because if that is the case, the latter
will dominate the former on both size and influence value. Based
on this novel k-influential community model, the goal of the influ-
ential community search problem is to find the top-r k-influential
communities with the highest influence value in a network.

Straightforward searching the top-r k-influential communities in
a large network is impractical, because there could be a large num-
ber of communities that satisfy the degree constraint, and for each
community, we need to check whether it is a k-influential commu-
nity. By an in-depth analysis of the structure of k-influential com-
munities, we discover that all the k-influential communities can
be obtained by iteratively deleting the smallest-weight node of the
maximal k-core. Based on this finding, we propose a depth-first-
search (DFS) based algorithm to search the top-r k-influential com-
munities online. We show that the DFS-based algorithm consumes
linear time and space with respect to (w.r.t.) the graph size.

For very large graphs, however, the linear-time DFS-based algo-
rithm is still inefficient. To further accelerate the influential com-

509

munity search algorithm, we design a novel index structure, called
ICP-Index, to index all the pre-calculated k-influential communi-
ties. The ICP-Index preserves all the k-influential communities,
and it takes only linear space w.r.t. the graph size. Based on the
ICP-Index, the query of the top-r k-influential communities can be
computed in linear time w.r.t. the answer size only, thus it is opti-
mal. To construct the ICP-Index, we devise an efficient algorithm
that takes O(ρm) time and O(m) space, where ρ and m denote
the arboricity [7] and the number of edges of a graph, respectively.
Note that the arboricity of a graph is no larger than O(

√
m) even

in the worst case [7], and it has shown to be much smaller than the
worst case bound in many real-world sparse graphs [17, 14]. In
addition, we also propose an efficient algorithm to incrementally
maintain the index when the graph is frequently updated.

We conduct extensive experiments over six web-scale real-world
graphs to evaluate the efficiency of the proposed algorithms. The
results show that the ICP-Index-based algorithm is several orders
of magnitude faster than the DFS-based online search algorithm.
The query time of the ICP-Index-based algorithm is from one mil-
lisecond for small k and r to a few seconds for large k and r in
four large graphs with more than one billion edges. Moreover, the
results show that the ICP-Index is compact and can be construct-
ed efficiently. The results also indicate that the proposed index
maintenance algorithm is very efficient which is at least four order-
s of magnitude faster than the baseline algorithm in large graphs.
In addition, we also conduct comprehensive case studies on a co-
authorship network to evaluate the effectiveness of the k-influential
community model. The results demonstrate that using our commu-
nity model is capable of finding meaningful influential communi-
ties in a network, which can not be identified by using the k-truss
community model [15].

The rest of this paper is organized as follows. We formulate the
influential community search problem in Section 2. The DFS-based
algorithm is presented in Section 3. We design a new ICP-Index
and propose two index construction algorithms in Section 4. We
devise an efficient index update algorithm in Section 5. Extensive
experiments are reported in Section 6. We review related work and
conclude this paper in Section 7 and Section 8 respectively.

2. PROBLEM STATEMENT
Consider an undirected graph G = (V,E), where V and E de-

note the node set and edge set respectively. Denote by n = |V |
the number of nodes, and by m = |E| the number of edges in
G. Let d(v,G) be the degree of a node v in graph G. A graph
H = (VH , EH) is an induced subgraph of G if VH ⊆ V and
EH = {(u, v)|u, v ∈ VH , (u, v) ∈ E}. In this paper, we refer to
an induced subgraph H such that each node v in H has degree at
least k (i.e., d(v,H) ≥ k) as a k-core. The maximal k-core H ′ is
a k-core that no super graph H of H ′ is also a k-core. Note that the
maximal k-core of a graph G is unique and can be a disconnected
graph. For a node u ∈ V , the core number of u, denoted by cu, is
the maximal k value such that a k-core contains u.

In the literature, the maximal k-core is widely used to represent
cohesive communities of a graph [2, 22, 4, 16]. Instead of gener-
al cohesive communities, in this work, we seek to find influential
communities in a graph. Specifically, in our setting, each node u
in G has a weight wu (such as PageRank or any other user-defined
attributes), indicating the influence (or importance) of u. Addition-
ally, we assume without loss of generality that the weight vector
W = (w1, w2, · · · , wn) forms a total order, i.e., for any two nodes
vi and vj , if i ̸= j, then wi ̸= wj . Note that if that is not the case,
we use the node identity to break ties for any wi = wj . Before
proceeding further, we give the definition of influence value of an
induced subgraph as follows.

DEFINITION 1. Given an undirected graph G = (V,E) and
an induced subgraph H = (VH , EH) of G, the influence value of

v1

v2

v3

v4 v5

v8 v9 v6 v7

11v

10v13v

15v

14v

12v

54

3

11

769

10

8

2

1

15

14

13

12

Figure 1: Running example (the numbers denote the weights)
H denoted by f(H) is defined as the minimum weight of the nodes
in H , i.e., f(H) = minu∈VH{wu}.
By Definition 1, if the influence value of an induced subgraph H
(i.e., f(H)) is large, then the weight of every node in H should be a
large value, indicating that H is an influential subgraph. Below, we
give a brief discussion of why we define f as the minimum weight
of the nodes. Regarding the choice of f(H), we need to consider
functions that capture the influence (weight) of nodes in H . More-
over, we want the influence value f(H) to be a large value if the
induced subgraph H is influential. Except the minimum weight
of the nodes in H , one potential definition of f(H) is the average
weight of the nodes in H , i.e., f(H) =

∑
u∈VH

wu/|VH |. How-
ever, this definition has a drawback that it is not robust to outliers.
Specifically, by this definition, an influential subgraph may include
low-weight nodes (outliers), albeit it has a high average weight.
Therefore, we focus on f(H) that is defined to be the minimum
weight of nodes in H , which is robust to such low-weight nodes.

Intuitively, an influential community should not only have a large
influence value, but it is also a cohesive induced subgraph. Based
on this intuition, we give the definition of k-influential community,
where the parameter k controls the cohesiveness of the community.

DEFINITION 2. Given an undirected graph G = (V,E) and
an integer k. A k-influential community is an induced subgraph
Hk = (V k

H , Ek
H) of G that meets all the following constraints.

• Connectivity: Hk is connected;
• Cohesiveness: each node u in Hk has degree at least k;
• Maximal structure: there is no other induced subgraph H̃

such that (1) H̃ satisfies connectivity and cohesiveness con-
straints, (2) H̃ contains Hk, and (3) f(H̃) = f(Hk).

Clearly, the cohesiveness constraint indicates that the k-influential
community is a k-core. With the connectivity and cohesiveness
constraints, we can ensure that the k-influential community is a
connected and cohesive subgraph. And with the maximal structure
constraint, we can guarantee that any k-influential community can-
not be contained in a super-k-influential community with equiva-
lent influence value. Because if that is the case, the latter will dom-
inate the former on both size and influence value. The following
example illustrates the definition of k-influential community.

EXAMPLE 1. Consider the graph shown in Fig. 1. Suppose,
for instance, that k = 2, then by definition the subgraph induced
by node set {v12, v13, v14, v15} is a 2-influential community with
influence value 12, as it meets all the constraints in Definition 2.
Note that the subgraph induced by node set {v12, v14, v15} is not
a 2-influential community. This is because it is contained in a
2-influential community induced by node set {v12, v13, v14, v15}
whose influence value equals its influence value, thus fail to satisfy
the maximal structure constraint.

In many practical applications, we are typically interested in
the most influential communities whose influence values are larger
than those of all other influential communities. In this paper, we
aim to find such communities in a large graph efficiently. Below,
we formulate two influential community search problems.
Problem 1. Given a graph G = (V,E), a weight vector W , and t-
wo parameters k and r, the problem is to find the top-r k-influential
communities with the highest influence value.

510

For Problem 1, a k-influential community may be contained in
another k-influential community in the top-r results. For example,
in Fig. 1, we can easily verify that the top-2 2-influential communi-
ties are the subgraphs induced by {v13, v14, v15} and {v12, v13, v14, v15},
respectively. Clearly, in this example, the second 2-influential com-
munity contains the first 2-influential community. To avoid the
inclusion relationships in the top-r results, in the following, we
consider a problem of finding the top-r non-contained k-influential
communities.

DEFINITION 3. Given a graph G = (V,E) and an integer k.
A non-contained k-influential community Hk = (V k

H , Ek
H) is a

k-influential community that meets the following constraint.
• Non-containment: Hk cannot contain a k-influential com-

munity H̄k such that f(H̄k) > f(Hk).

We illustrate Definition 3 in the following example.

EXAMPLE 2. Let us reconsider the graph shown in Fig. 1. As-
sume that k = 2. By Definition 3, we can see that the subgraphs
induced by {v3, v4, v5}, {v8, v9, v11} and {v13, v14, v15} are non-
contained 2-influential communities. However, the subgraph in-
duced by {v12, v13, v14, v15} is not a non-contained 2-influential
community, because it includes a 2-influential community (the sub-
graph induced by {v13, v14, v15}) with a larger influence value.

Problem 2. Given a graph G = (V,E), a weight vector W , and
parameters k and r, the problem is to find the top-r non-contained
k-influential communities with the highest influence value.

Note that with the Non-containment constraint, there is no inclu-
sion relationship in the top-r non-contained k-influential commu-
nities, thus no redundant results are introduced.
Challenges. A k-influential community is different from the max-
imal k-core in two aspects. First, a k-influential community must
be a connected subgraph, whereas the maximal k-core does not
impose such a constraint. Second, with the maximal structure con-
straint, a k-influential community Hk requires that there is no super-
graph of Hk which is a connected k-core with influence value e-
quivalent to f(Hk). However, the maximal k-core H only requires
that there is no super-graph of H which is also a k-core. For a
non-contained k-influential community, it further imposes a non-
containment constraint. Due to these differences, given a graph
G, the maximal k-core of G is unique, whereas there are multiple
(non-contained) k-influential communities in G. Thus, the meth-
ods for computing the maximal k-core cannot be directly used for
computing the top-r (non-contained) k-influential communities.

A straightforward method to compute the top-r (non-contained)
k-influential communities is first to compute the set of subgraph-
s that satisfy the connectivity and cohesiveness constraints. For
each subgraph, we further check whether it satisfies the maximal
structure constraint and the non-containment constraint (for non-
contained k-influential communities). Finally, the top-r (non-contained)
k-influential communities with the highest influence value are re-
turned. Obviously, such a method is inefficient since the number of
potential subgraphs that satisfy the connectivity and cohesiveness
constraints can be exponentially large, and for each potential sub-
graph, we need to check the maximal structure constraint, which is
costly. In the following sections, we will present several efficient
algorithms to tackle these challenges.

3. ONLINE SEARCH ALGORITHM
In this section, we focus on developing online search algorithms

for Problem 1, and then discuss how to generalize the proposed
algorithms for Problem 2. Before we proceed further, we give three
useful lemmas as follows. Due to space limit, all the proofs are
deferred to the full version of this paper.

LEMMA 1. For any graph G, each maximal connected compo-
nent of the maximal k-core of G is a k-influential community.

Algorithm 1 The basic algorithm
Input: G = (V,E), W , r, and k
Output: The top-r k-influential communities
1: G0 ← G, i← 0;
2: while Gi contains a k-core do
3: Compute the maximal k-core Ck(Gi);
4: Let Hk(i) be the maximal connected component of Ck(Gi) with

the smallest influence value;
5: Let u be the smallest-weight node in Hk(i);
6: Delete u;
7: Let Gi+1 be a subgraph of Ck(Gi) after deleting u;
8: i← i+ 1;
9: Output Hk(i−1), · · · , Hk(i− r) if i ≥ r, otherwise output Hk(i−

1), · · · , Hk(0).

LEMMA 2. For any k-influential community Hk = (V k
H , Ek

H),
if we delete the smallest-weight node in Hk and the resulting sub-
graph still contains a maximal k-core Ck = (V k

C , Ek
C), then each

maximal connected component of Ck is a k-influential community.

LEMMA 3. For any k-influential community Hk = (V k
H , Ek

H),
if we delete the node in Hk with the smallest weight and the re-
sulting subgraph does not contain a k-core, then Hk is a non-
contained k-influential community.

Based on the above lemmas, we are ready to devise efficient al-
gorithms for Problem 1 and Problem 2. Below, we first develop a
basic algorithm for our problems, and then propose an optimized
algorithm based on depth-first search (DFS), which is much more
efficient than the basic one.

3.1 The basic algorithm
The basic idea of our algorithm is described below. First, for a

given k, we compute the maximal k-core of the graph G denoted
by Ck(G). Then, we iteratively invoke the following procedure
until the resulting graph does not contain a k-core. The procedure
consists of two steps. Let Gi be the resulting graph in the i-th
iteration, and Ck(Gi) be the maximal k-core of Gi. The first step
is to delete the smallest-weight node in Ck(Gi−1), which results
in a graph Gi. The second step is to compute the maximal k-core
Ck(Gi) of Gi. The detailed description is outlined in Algorithm 1.

Below, we first show that all the Hk(j) (0 ≤ j ≤ i−1) obtained
by Algorithm 1 are k-influential communities. Then, based on this
fact, we will prove that Algorithm 1 correctly outputs the top-r k-
influential communities in Theorem 2.

THEOREM 1. Let Hk = {Hk(0), · · · , Hk(i − 1)} be a set
including all the Hk(j) (0 ≤ j ≤ i− 1) obtained by Algorithm 1.
Then, for 0 ≤ j ≤ i− 1, Hk(j) is a k-influential community.

THEOREM 2. Algorithm 1 correctly finds the top-r k-influential
communities.

According to Theorem 2, we have a corollary as shown below.
COROLLARY 1. Given a graph G with n nodes. For a given k,

the number of k-influential communities in G is bounded by n.
We analyze the time and space complexity of Algorithm 1 in the

following theorem.
THEOREM 3. The time complexity of Algorithm 1 is O(Nkm)

bounded by O(nm), where Nk denotes the number of k-influential
communities. The space complexity of Algorithm 1 is O(n+m).

Note that we can slightly modify Algorithm 1 to obtain the top-
r non-contained k-influential communities. Specifically, we only
need to add one line behind line 6 in Algorithm 1 to check whether
Hk(i) includes a k-core or not. If Hk(i) does not include a k-core,
then by Lemma 3, Hk(i) is a non-contained k-influential commu-
nity, and we mark such a Hk(i) as a candidate result. Finally, in
line 9, we only output the top-r results that are marked as candidate
results. It is easy to show that the time and space complexity of this
algorithm is the same as those of Algorithm 1.

511

Algorithm 2 The DFS-based algorithm
Input: G = (V,E), W , r, and k
Output: The top-r k-influential communities
1: i← 0;
2: Compute the maximal k-core Ck(G) of G;
3: while Ck(G) ̸= ∅ do
4: Let Hk(i) be the maximal connected component of Ck(G) with

the smallest influence value;
5: Let u be the node with the smallest weight in Hk(i);
6: DFS(u);
7: i← i+ 1;
8: Output Hk(i), · · · , Hk(i − r + 1) if i ≥ r, otherwise output

Hk(i), · · · , Hk(1).

9: Procedure DFS (u)
10: for all v ∈ N(u,Ck(G)) do
11: Delete edge (u, v) from Ck(G);
12: if d(v, Ck(G)) < k then
13: DFS(v);
14: Delete node u from Ck(G);

3.2 The DFSbased algorithm
As shown in the previous subsection, Algorithm 1 is very expen-

sive which is clearly impractical for most real-world graphs. Here
we present a much more efficient algorithm based on depth-first-
search (DFS). The detailed description of the algorithm is shown
in Algorithm 2. Similar to Algorithm 1, Algorithm 2 also itera-
tively computes the k-influential communities one by one. Unlike
Algorithm 1, in each iteration, Algorithm 2 does not recompute
the maximal k-core. Instead, in each iteration, Algorithm 2 re-
cursively deletes all the nodes that are definitely excluded in the
subsequent k-influential communities. In particular, when Algo-
rithm 2 deletes the smallest-weight node in the k-influential com-
munity Hk(i) (line 6), the algorithm recursively deletes all the n-
odes that violate the cohesiveness constraint by a DFS procedure
(lines 9-14). This is because, when we delete the smallest-weight
node u, the degrees of u’s neighbor nodes decrease by 1. This may
result in that some of u’s neighbors violate the cohesiveness con-
straint, thus they cannot be included in the subsequent k-influential
communities, and thereby we have to delete them. Similarly, we
also need to verify the other hop (e.g., 2-hop, 3-hop, etc.) neigh-
bors whether they satisfy the cohesiveness constraint. Clearly, we
can use a DFS procedure to identify and delete all those nodes. The
correctness of Algorithm 2 is shown in Theorem 4.

THEOREM 4. Algorithm 2 correctly finds the top-r k-influential
communities.

The complexity of Algorithm 2 is analyzed in Theorem 5.
THEOREM 5. The time complexity and space complexity of Al-

gorithm 2 are both O(m+ n).
Similarly, we can easily modify Algorithm 2 for Problem 2. In

particular, we only need to add one line behind line 6 in Algorith-
m 2 to check whether all nodes in Hk(i) are deleted or not. If that
is the case, Hk(i) is a non-contained k-influential community (by
Lemma 3), and we mark such a Hk(i) as a candidate result. Final-
ly, in line 8, we only output the top-r results that are marked. It is
easy to show that the time complexity and space complexity of this
algorithm are the same as those of Algorithm 2.

4. INDEXBASED SEARCH ALGORITHM
Although Algorithm 2 is much more efficient than Algorithm 1,

it takes O(m + n) time for each query which is still inefficient
for very large graphs. In this section, we present an index-based
algorithm whose time complexity is proportional to the size of the
top-r results, thus it is optimal. The general idea is that the algorith-
m first pre-computes all k-influential communities for every k, and

then uses a space-efficient structure to index all such k-influential
communities in memory. Based on the index, the algorithm outputs
the top-r results in optimal time. The challenges of this algorithm
are twofold: (1) how to devise a space-efficient structure to store all
the k-influential communities, and (2) how to efficiently construct
such an index. This is because there could be O(n) k-influential
communities for each k (see Corollary 1), and thus there could be
O(kmaxn) k-influential communities in total, where kmax is the
maximal core number of the nodes in G. Obviously, it is imprac-
tical to directly store all such k-influential communities for very
large graphs. To tackle these challenges, we will present a novel
linear-space structure, called ICP-Index (influential-community p-
reserved index), to compress and store all the k-influential commu-
nities, and then we propose two algorithms to efficiently construct
the ICP-Index.

4.1 The novel ICP-Index
The idea of the ICP-Index is based on the following observation.

Observation. For each k, the k-influential communities form an
inclusion relationship. Based on such an inclusion relationship, all
the k-influential communities can be organized by a tree-shape (or
a forest-shape) structure.

Recall that Lemma 2 implies an inclusion relationship in the k-
influential communities. More specifically, based on Lemma 2,
we can see that a k-influential community Hk contains all sub-k-
influential communities which are the MCCs of the maximal k-core
of Hk\{u}, where u is the smallest-weight node in Hk. Note that
all these sub-k-influential communities are disjoint, because they
are different MCCs. Clearly, we can use a two-level tree struc-
ture to characterize the inclusion relationships among all these k-
influential communities. The parent vertex is Hk, and each child
vertex is a MCC of the maximal k-core of Hk\{u} which is also
a k-influential community. Note that the result of Lemma 2 can be
recursively applied in each sub-k-influential community. Thus, we
can obtain a tree structure for an initial k-influential community,
where each vertex of the tree corresponds to a k-influential com-
munity. To organize all the k-influential communities of a graph G,
we can set the initial k-influential communities as the MCCs of the
maximal k-core of G. As a consequence, we are able to use a tree
(or forest1) structure to organize all the k-influential communities,
where the root vertex of a tree is a MCC of the maximal k-core of
G. Additionally, by Lemma 3, it is easy to see that each leaf vertex
in such a tree corresponds to a non-contained k-influential commu-
nity. To avoid confusion, in the rest of this paper, we use the term
vertex to denote a node in a tree.
Compression method. Based on the inclusion relationship be-
tween the parent vertex and child vertex in the tree (or forest) struc-
ture, we can compress all k-influential communities. Our compres-
sion solution is described as follows. For each non-leaf vertex in
the tree which corresponds to a k-influential community, we only s-
tore the nodes of the k-influential community that are not included
in it’s sub-k-influential communities (i.e, it’s child vertices in the
tree). The same idea is recursively applied to all the non-leaf ver-
tices of the tree following a top-down manner. For each leaf vertex
which corresponds to a non-contained k-influential community, we
store all the nodes of that non-contained k-influential community.
The following example illustrates the tree organization of all the
k-influential communities.

EXAMPLE 3. Reconsider the graph shown in Fig. 1. Let us
consider the case of k = 2. Clearly, the entire graph is a connect-
ed 2-core, thus it is a 2-influential community. Therefore, the root
vertex of the tree corresponds to the entire graph. After deleting
the smallest-weight node v1, we get three 2-influential communi-
ties which are the subgraphs induced by the node sets {v3, v4, v5},
1If the maximal k-core of G has more than one MCCs, then the
index structure is a forest, where each MCC generates a tree.

512

v1 v8

v2 v3 12v

13v

14v 15v

v4 v5v6

v7

v8

v9
10v 11v

v1 v2

v3

v4 v5 v6 12v

v7 10v

v8
v9 11v

13v
14v 15v

13v
15v14v

12v
11v

v6 v7v9
10v

v1

(a) (b) (c)k=1 k=2 k=3
Figure 2: Tree organization of all the k-influential communities
Algorithm 3 The basic index construction algorithm
Input: G = (V,E) and W
Output: The ICP-Index
1: for i = 1 to kmax do
2: j ← 0; ITk ← ∅
3: Compute the maximal k-core Ck(G) of G;
4: while Ck(G) ̸= ∅ do
5: Let Hk(j) be the maximal connected component of Ck(G) with

the smallest influence value;
6: Let u be the node with the smallest weight in Hk(j);
7: DFS(u) {The same DFS procedure as invoked in Algorithm 2};
8: Let Sj be a set of nodes that are deleted in DFS(u);
9: Add a vertex Sj in ITi;

10: j ← j + 1;
11: return ConstructTree();

{v6, · · · , v11}, and {v12, · · · , v15} respectively. Thus, we create
three child vertices for the root vertex which corresponds to the
three 2-influential communities respectively. Since v1 and v2 are
not included in these three 2-influential communities, we store them
in the root vertex. The same idea is recursively applied in all the
three 2-influential communities. For instance, for the 2-influential
community induced by {v3, v4, v5}, we can find that it is a non-
contained 2-influential community. By our compression method,
we store the nodes {v3, v4, v5} in the corresponding tree vertex.
For the other child vertices of the root, we have a similar process.
Also, similar processes can be used for other k values. Fig. 2 shows
the tree organization for all k for the graph shown in Fig. 1.

We refer to the above tree-shape structures for all k from 1 to
kmax as the ICP-Index. Below, we analyze the space complexity
of the ICP-Index in Theorem 6.

THEOREM 6. The space complexity of the ICP-Index is O(m).
By Theorem 6, the ICP-Index takes linear space w.r.t. the graph

size, thus it can be used for very large graphs. Below, we present
two algorithms to construct the ICP-Index.
4.2 The basic index construction algorithm

The basic index construction algorithm is to invoke Algorithm 2
kmax times, where kmax is the maximal core number of the nodes
in G. Specifically, the basic algorithm consists of two steps. In the
first step, the algorithm iteratively calls Algorithm 2 to compute all
the tree vertices for each k (k = 1, · · · , kmax). Then, in the second
step, the algorithm invokes a tree construction algorithm to build
the ICP-Index. The detailed description of the algorithm is outlined
in Algorithm 3. Note that in line 8 of Algorithm 3, all the nodes
deleted after invoking DFS(u) must be stored in a tree vertex. The
reason is that the nodes deleted by DFS(u) are excluded in any sub-
k-influential communities of the current k-influential community.
Moreover, only these nodes in the current k-influential community
are excluded in its sub-k-influential communities. Thus, by our
compression method, we need to create a tree vertex that contains
all these nodes (line 9 of Algorithm 3). After generating all the tree

Algorithm 4 ConstructTree()
1: for i = 1 to kmax do
2: Create a signal-vertex tree for each vertex in ITi;
3: for all node u in G sorted in decreasing order of wu do
4: for all v ∈ N(u,G) s.t. wv > wu do
5: for i = 1 to min{cu, cv} do
6: Su ← the root node of the tree in ITi containing u;
7: Sv ← the root node of the tree in ITi containing v;
8: if Su ̸= Sv then
9: Merge the trees rooted at Su and Sv in ITi by adding Sv

as a child vertex of Su;
10: return {IT1, · · · , ITkmax};

k = 1 {v1}, {v2}, {v3}, {v4, v5}, {v6}, {v7}, {v8},
{v9, v10, v11}, {v12}, {v13}, {v14, v15}

k = 2 {v1, v2}, {v3, v4, v5}, {v6}, {v7, v10},
{v8, v9, v11}, {v12}, {v13, v14, v15}

k = 3 {v1, v8}, {v6, v7, v9, v10, v11}, {v12, v13, v14, v15}
Table 1: The tree vertices for all k

vertices for all k, the algorithm calls Algorithm 4 to construct the
ICP-Index (line 11 of Algorithm 3).

Specifically, Algorithm 4 works in a bottom-up manner. To build
a tree (or forest) structure for each k (k = 1, · · · , kmax), the algo-
rithm first builds a single-vertex tree for each tree vertex generated
in the previous step (lines 1-2 of Algorithm 4). Then, for each k, the
final tree (or forest) structure can be obtained by iteratively merg-
ing two subtrees (lines 3-9). Here the merge operation between two
subtrees T1 and T2 is defined as follows. Let r1 and r2 be the roots
of subtrees T1 and T2 respectively. Assume that f(r1) < f(r2)
where f(ri) = minu∈ri{wu} for i = 1, 2. Then, the merge op-
eration between T1 and T2 is to set the root of T2 as a child vertex
of the root of T1. Note that this subtree merge operation can be
efficiently implemented by using a union-find structure [9]. More-
over, we find that such a bottom-up tree construction algorithm for
all k can be done via traversing the graph once, following a de-
creasing order of the node weight (lines 3-9 of Algorithm 4). The
detailed implementation is depicted in Algorithm 4. We prove the
correctness of Algorithm 4 in Theorem 7.

THEOREM 7. Algorithm 4 correctly creates the tree-shape struc-
tures for all k (k = 1, · · · , kmax).

The correctness of Algorithm 3 can be guaranteed by Theorem 4
and Theorem 7. Below, we give an example to show how Algorith-
m 3 works.

EXAMPLE 4. Consider the graph shown in Fig. 1. For each k,
by invoking the DFS-based algorithm, Algorithm 3 generates all
the tree vertices shown in Table 1. Then, the algorithm calls Algo-
rithm 4 to build the tree index. First, for each k (k = 1, 2, 3), the
Algorithm 4 creates a tree for each vertex. For instance, for k = 1,
the algorithm generates 11 trees, because in Table 1 (row 1), there
are 11 vertices when k = 1. Then, the algorithm processes the
node v15, as it is the largest-weight node. As can be seen, v15 has
four neighbor nodes {v1, v12, v13, v14}. But the weights of all of
them are smaller than w15, thus the algorithm continues to process
node v14. Since v14 has a neighbor v15 whose weight exceeds w14,
the algorithm traverses the edge (v14, v15) (line 4 of Algorithm 4).
Since the core numbers of v14 and v15 are 3, these two nodes must
be included in the vertices of the trees of k = 1, 2, 3. Thus, for each
k (k = 1, 2, 3), the algorithm first finds the root vertices of the trees
including v14 and v15 respectively (lines 6-7 of Algorithm 4). Since
both v14 and v15 are included in the same vertex for all k, no merge
operation will be done. For the remaining nodes, we use the same
procedure, and we will obtain the tree-shape structures shown in
Fig. 2 when the algorithm terminates.

We analyze the time complexity of Algorithm 3 and Algorithm 4
as follows.

THEOREM 8. The time complexities of Algorithm 3 and Algo-
rithm 4 are O(kmax(m + n)) and O(ρm) respectively, where ρ is
the arboricity [7] of a graph G.

513

Algorithm 5 The new index construction algorithm
Input: G = (V,E)
Output: The ICP-Index
1: Compute the core number cu for each node u ∈ V (G);
2: for all u ∈ V (G) do
3: xu ← |{v|v ∈ N(u,G), cv >= cu}|; c̃u ← cu;
4: ITi ← ∅ for 1 ≤ i ≤ kmax;
5: for all u ∈ V (G) sorted in increasing order of wu do
6: for i = 1 to c̃u do
7: Si ← {u};
8: k ← c̃u; c̃u ← −1;
9: U ← ∅;

10: UpdateCore(u, k, S, U);
11: UpdateSupport(U);
12: for i = 1 to k do
13: Add a vertex Si in ITi;
14: return ConstructTree();

In addition, it is easy to derive that the space complexity of Al-
gorithm 3 is O(m+ n), which is linear w.r.t. the graph size.

4.3 The new index construction algorithm
As shown in previous subsection, the time complexity of the ba-

sic index construction algorithm is O(kmax(m+n)) which is inef-
ficient when the graph size and kmax are very large. Here we pro-
pose a much more efficient algorithm to construct the ICP-Index.

Recall that in Algorithm 3, the most time-consuming step is to
generate all the tree vertices for all k. Thus, to reduce the time over-
head, we strive to reduce the time cost of the tree vertices genera-
tion procedure. Unlike Algorithm 3 which creates all tree vertices
following the increasing order of k (i.e., k = 1, · · · , kmax), the
key idea of our new algorithm is that it generates all tree vertices
following the increasing order of node weights. Specifically, the
new algorithm iteratively deletes the nodes following the increas-
ing order of their weights. When the algorithm removes a node u
in an iteration, the algorithm will generate the tree vertices contain-
ing u for all k. Thus, if all the nodes are deleted, all tree vertices
are generated. After creating all tree vertices, the algorithm calls
Algorithm 4 to build the ICP-Index. The rationale behind the new
algorithm is as follows. We observe in Algorithm 3 that for each
k, all the tree vertices are generated based on the increasing or-
der of node weights. Since all the tree generation procedures for
k = 1, · · · , kmax share the same node order, we can simultaneous-
ly create all the tree vertices for all k by following this order.

The challenge of the new algorithm is how to correctly create
the tree vertices for all k when deleting a node. Note that a node u
with core number cu is included in cu different vertices in the trees
with k = 1, 2, · · · , cu respectively. Thus, if u is deleted, the new
algorithm must simultaneously creates cu different tree vertices.
Since each tree vertex containing u may also include other nodes,
the algorithm also needs to find these nodes and add them into the
tree vertex that includes u. Furthermore, after deleting a node, the
core numbers of some other nodes may be updated. Therefore,
when the algorithm deletes node u, the current core number of u
denoted by c̃u may not be the original cu, as it may be updated after
a node is deleted. This gives rise to a new challenge to devise such
a tree vertices generation algorithm.

To overcome the above challenges, we develop an algorithm that
can correctly create the tree vertices for all k when deleting a n-
ode. The idea of our algorithm is that when the algorithm deletes
a node u in an iteration, it creates c̃u (i.e., the current core number
of u) tree vertices and dynamically maintains the core numbers of
the other nodes after deleting u. By an in-depth analysis of our
algorithm, we can show that all the tree vertices containing u that
are not created in this iteration have already been generated before
deleting u. The detailed description of our algorithm is shown in
Algorithm 5.

Algorithm 6 UpdateCore(u, k, S, U)
1: if c̃u ̸= −1 then
2: Sc̃u+1 ← Sc̃u+1

∪
{u};

3: U ← U
∪
{u};

4: for all v ∈ N(u,G) s.t.c̃u ≤ cv do
5: if c̃v = −1 or v ∈ U then
6: continue;
7: if (c̃u = −1 and c̃v ≤ k) or (c̃u ̸= −1 and c̃v = c̃u + 1) then
8: xv ← xv − 1;
9: if xv < c̃v then

10: c̃v ← c̃v − 1;
11: UpdateCore(v, k, S, U);

Algorithm 7 UpdateSupport(U)
1: for all u ∈ U do
2: xu ← 0;
3: if c̃u = −1 then
4: continue;
5: for all v ∈ N(u,G)s.t.c̃u ≤ cv do
6: if c̃v ≥ c̃u then
7: xu ← xu + 1;

Algorithm 5 iteratively deletes the nodes by following the in-
creasing order of their weights (line 5). In each iteration, the al-
gorithm creates c̃u tree vertices when deleting u, where c̃u is the
updated core number of node u (lines 6-7). Note that in Algorith-
m 5, the algorithm does not explicitly delete a node. Instead, the
algorithm sets the core number of a node to −1, indicating that the
node is deleted (line 8). After deleing a node, the algorithm call-
s Algorithm 6 and Algorithm 7 to dynamically maintain the core
numbers of the remaining nodes (lines 10-11). Notice that Algo-
rithm 6 and Algorithm 7 generalize the core maintenance algorith-
m independently proposed in [16, 20] to handle the case of node
deletion2. Here we implement this core maintenance algorithm by
dynamically updating the support of each node u (denoted by xu),
which is defined as the number of neighbors whose updated core
numbers are no smaller than c̃u. When the support of a node u is
smaller than it’s current core number (i.e., xu < c̃u), the core num-
ber of u must be updated (lines 9-11 of Algorithm 6). Note that
the core numbers of all the remaining nodes decrease by at most
1 after removing a node. In addition, after deleing a node u, the
neighbor nodes of u with core numbers larger than c̃u may need
to update their core number (line 4 of Algorithm 6). Moreover, in
the core number maintenance procedure (Algorithm 6), the algo-
rithm also needs to add the nodes whose core numbers are updated
into the corresponding tree vertices (line 2 of Algorithm 6). The
correctness of Algorithm 5 is shown in Theorem 9.

THEOREM 9. Algorithm 5 correctly creates the ICP-Index.

The following example illustrates how Algorithm 5 works.
EXAMPLE 5. Consider the graph shown in Fig. 1. In the first

iteration of Algorithm 5, the algorithm processes node v1. Since
c̃1 = 3, the algorithm creates three tree vertices that include v1,
which is denoted by S1(v1), S2(v1), and S3(v1) respectively (lines 6-
7). Note that here Si(v1) (i = 1, 2, 3) denotes a tree vertex that
belongs to the tree of k = i. Subsequently, the algorithm sets the
core number of v1 to −1, indicating that v1 is deleted. Then, the
algorithm invokes Algorithm 6 to update the core numbers of the
remaining nodes. After invoking Algorithm 6, we can find that v2
is inserted into the tree vertex S2(v1), and v8 is added into the tree
vertex S3(v1). Moreover, the core numbers of v2 and v8 are updat-
ed to 1 and 2 respectively. After that, all the tree vertices containing
v1 have been generated, which is consistent with the tree vertices
shown in Table 1. In the second iteration, the algorithm contin-
ues to deal with node v2 by following the increasing order of node
2The original core maintenance algorithms independently pro-
posed in [16, 20] mainly focus on edge deletion and insertion.

514

weights. Since the current core number of v2 is 1, in this iteration,
the algorithm only creates one tree vertex S1(v2) that contains v2
(lines 6-7). Likewise, the algorithm sets the core number of v2 to
−1, denoting that v2 is removed. Then, the algorithm calls Algo-
rithm 6 to update the core numbers of the remaining nodes. After
invoking Algorithm 6, we can see that no node needs to update its
core number. Therefore, in this iteration, the algorithm generates
only one tree vertex S1(v2) that contains only one node v2. Up to
this iteration, all the tree vertices that includes v2 is created. Other
iterations are processed similarly. After processing all nodes, the
algorithm correctly generates all tree vertices shown in Table 1. Fi-
nally, the algorithm calls Algorithm 4 to construct the ICP-Index.

The time complexity of Algorithm 5 is shown in Theorem 10.
THEOREM 10. The time complexity of Algorithm 5 is O(ρm),

where ρ is the arboricity of the graph.
REMARK 1. According to [7], the arboricity of a graph is nev-

er larger than O(
√
m) in the worst case, and it has shown to be

very small in many real-world graphs [17, 14]. Thus, the time cost
of Algorithm 5 is much lower than the worst case bound, which is
also confirmed in our experiments.

In addition, it is very easy to show that the space complexity of
Algorithm 5 is O(m+ n).

4.4 Query processing algorithm
Based on the ICP-Index, the query processing algorithm is s-

traightforward. For Problem 1, to compute the top-r k-influential
communities, the algorithm first finds the tree corresponding to k
from the ICP-Index, and then outputs the nodes in the top-r sub-
trees with the highest weights (the weight of a subtree is the mini-
mum weight of nodes in its root vertex). This is because in our ICP-
Index, the nodes included in a subtree of the tree corresponding to
k exactly form a k-influential community. Similarly, for Problem 2,
the algorithm outputs nodes in the top-r leaf vertices with the high-
est weights in the tree corresponding to k, as the nodes in each leaf
vertex form a non-contained k-influential community. The time
complexity of the query processing algorithm for both Problem 1
and Problem 2 is linear w.r.t. the answer size3, thus it is optimal.

5. UPDATE IN DYNAMIC NETWORKS
Many real-world networks are frequently updated. Clearly, when

the network is updated, both the ICP-Index and the top-r results al-
so need to be updated. The challenge is that a single edge insertion
or deletion may trigger updates in a number of tree vertices of the
ICP-Index. This can be an expensive operation because the corre-
sponding tree vertices need to be recomputed. For example, consid-
er a graph shown in Fig. 1. After inserting an edge (v10, v11), the
tree vertex {v9, v10, v11} in the tree of k = 1 (See Table 1) needs
to be split into two tree vertices {v9} and {v10, v11}. In the tree of
k = 2, the two tree vertices {v7, v10} and {v8, v9, v11} are updated
by three tree vertices which are {v7}, {v8}, and {v9, v10, v11}. In
the tree of k = 3, no update is needed. To overcome this challenge,
we will propose an efficient algorithm for dynamically maintain-
ing the tree vertices of the ICP-Index when the network is updated.
Note that we can also efficiently answer the query by using the tree
vertices only (without the tree structure). Specifically, we can first
find the top-r tree vertices, and then only search the neighbors of
the nodes in the tree vertices to construct the answer (i.e., the tree
structure is implicitly constructed online). It is easy to show that
the time complexity of this algorithm is the same as the time com-
plexity of the previous tree-based algorithm to construct the top-r
results (include edges). Therefore, in this paper, we mainly focus
on updating the tree vertices. Below, we consider two types of up-
dates: edge insertion and edge deletion.
3Suppose that each answer only contains the set of nodes in each
community; Otherwise, we simply compute the induced subgraph
by the nodes in the answer.

Before we proceed further, we define some useful and frequently
used notations. Let rmax be the maximal r in the queries posed by
the users. For example, we can assume rmax = 100, 000, because
users typically are not interested in the results beyond top-100, 000.
For convenience, we refer to the tree of k = i in the ICP-Index as
tree-i. Let r̃u be the rank of u in the sorted list of nodes with the
increasing order by weights. For simplicity, we assume that the
rank of a node is based on the property of the node itself, which is
independent of edge updates. For each tree-i (i = 1, · · · , kmax),
we assign a timestamp for every tree vertex when it is generated
by Algorithm 2. Here the timestamp is an integer ranging from 1
to ni, where ni denotes the number of vertices in tree-i. Note that
by definition, a tree vertex with a large timestamp implies that the
tree vertex has a large influence value. Denote by R

(i)
u the times-

tamp of the tree vertex that contains node u in tree-i. For conve-
nience, we also refer to R

(i)
u as the timestamp of node u in tree-i

when the definition is clear. Let r̃(i)max be the rank of the smallest
weight node in the tree vertex with timestamp ni − rmax + 1. For
example, reconsider the graph shown in Fig. 1. We can see that
r̃v9 = 9. In tree-1, R(1)

v9 = 8, because v9 is included in the tree
vertex {v9, v10, v11} whose timestamp is 8 (See Table 1). Assume
that rmax = 4. Then, r̃(1)max = 9, because in tree-1, the tree vertex
with timestamp n1 − rmax + 1 (equals 8) is {v9, v10, v11}, where
the rank of the smallest weight node (v9) is 9.
5.1 Handling Edge Insertion

Here we consider the case of inserting an edge (u, v). The s-
traightforward method is to re-compute all tree vertices using Al-
gorithm 5 when the graph is updated. Clearly, this method is inef-
ficient for large graphs. Below, we first present two basic updating
rules, and then propose a minimum tree re-computation method to
further reduce the computational cost for edge insertion.
The basic updating rules: we give two basic updating rules below.
Rule 1: let cmin = min{cu, cv} (i.e., the minimum core number
of u and v). Then, after inserting (u, v), every tree-i for i > cmin+
1 will not be updated. This is because when inserting an edge, the
core numbers of the nodes increase by at most one [16]. As a result,
each i-influential community for i > cmin+1 does not change, and
thus every tree-i remains unchanged.
Rule 2 (Lazy update): the key idea of the lazy update rule is that
we only maintain the tree vertices when they affect the top-r results
for r ≤ rmax. Formally, we have the following lemma.

LEMMA 4. For each tree-i (i = 1, · · · , kmax), if r̃u < r̃
(i)
max or

r̃v < r̃
(i)
max, the tree vertices in the top-r results for r ≤ rmax keep

unchanged when the graph is updated by inserting or deleting an
edge (u, v).

Based on the above lemma, when inserting an edge (u, v), we
first check the conditions r̃u < r̃

(i)
max and r̃v < r̃

(i)
max. If one of

them holds, we do not perform any update operation for the tree
vertices in tree-i, because their updates do not affect the top-r re-
sults for r ≤ rmax.
The minimum tree re-computation method: Besides the basic
updating rules, here we present a method which can achieve min-
imum tree re-computation when an edge is inserted. The method,
as verified in our experiments, can largely reduce the computation-
al cost for edge insertion even after Rule 1 and Rule 2 are applied.
Recall that after inserting an edge (u, v), all tree-i with i > cmin+1
do not change (by Rule 1), thus we only need to update all tree-i
with i = 1, · · · , cmin + 1. Specifically, we consider two cases: (1)
all tree-i with i = 1, · · · , cmin, and (2) tree-(cmin + 1).

For case (1), we let liw be the number of w’s neighbors whose
timestamps are no less than w after inserting (u, v), i.e., liw =

|{x|x ∈ N(w,G) ∧ R
(i)
x ≥ R

(i)
w }|. By this definition, liw denotes

the degree of w in the i-core after deleting all nodes whose times-
tamps are smaller than w. We assume without loss of generality

515

that R(i)
u ≤ R

(i)
v in tree-i. Let ITi[R

(i)
u] be the tree vertex con-

taining u and ū be the smallest weight node in ITi[R
(i)
u]. After

inserting (u, v), for each tree-i with i = 1, · · · , cmin (case (1)),
we study whether ITi[R

(i)
u] needs to be updated. To this end, we

recover the procedure of generating the tree vertex ITi[R
(i)
u]. In

particular, we perform a similar DFS procedure as Algorithm 2 to
recursively delete the nodes in ITi[R

(i)
u]. Unlike Algorithm 2, here

we use liw as the degree of node w, and the DFS procedure only
traverses the nodes in ITi[R

(i)
u] and their neighbors as well. Sim-

ilar to Algorithm 2, the DFS procedure initially traverses node ū.
When a neighbor node of w for w ∈ ITi[R

(i)
u] is deleted, liw de-

creases by 1, and when liw is smaller than i, w is deleted. If node
u is deleted when the DFS procedure terminates, the tree vertex
ITi[R

(i)
u] does not need to be updated, and thereby all tree vertices

keep unchanged. The reason is as follows. First, the insertion of
edge (u, v) does not affect the tree vertices with timestamps small-
er than R

(i)
u . Second, if u is deleted, all other nodes in ITi[R

(i)
u]

must be deleted (by the definition of tree vertex), and thus the tree
vertex ITi[R

(i)
u] does not change. Third, if u is deleted, all u’s

outgoing edges are also deleted, and thus inserting the edge (u, v)

does not affect the tree vertices with timestamps larger than R
(i)
u .

On the other hand, if node u fails to be removed by the DFS pro-
cedure, then we re-compute all the tree vertices for tree-i. Below,
we give a sufficient and necessary condition for updating the tree
vertices in tree-i.

LEMMA 5. For each tree-i with i = 1, · · · , cmin, the tree ver-
tices in tree-i need to be updated after inserting (u, v), if and only
if u is not deleted by the DFS procedure.

By Lemma 5, a sufficient and necessary condition for updating
the tree vertices in tree-i is that u is not deleted by the DFS proce-
dure. Thus, our algorithm, which is based on such a sufficient and
necessary condition, is optimal in the sense that the number of tree
re-computations by our algorithm is minimum.

For case (2) (tree-(cmin + 1)), if u or v’s core number is updat-
ed, we use Rule 2 to update the tree vertices in tree-(cmin + 1).
Otherwise, no update is needed.

The algorithm for handling edge insertion is depicted in Algo-
rithm 8, which integrates both the basic updating rules and the
minimum tree re-computation method. In lines 4-5 and lines 9-
10, we use Rule 2 for updating. In lines 6-7, we apply the min-
imum tree re-computation method to update the tree vertices. In
the main loop (line 3), we use Rule 1 for updating. In lines 11-17,
the procedure IsRecompute is used to determine whether u (as-
sume R

(i)
u ≤ R

(i)
v) is deleted by the DFS procedure (InsertionDF-

S, lines 18-24) or not. Note that in the InsertionDFS procedure,
we set lku = −1 to denote that u is deleted. The correctness of
Algorithm 8 can be guaranteed by Lemma 4 and Lemma 5. The
time complexity for checking the tree re-computation conditions
in Algorithm 8 (line 6) is O(

∑cmin
i=1

∑
u∈IT [R

(i)
u]

du). In the ex-
periments, we will show that our algorithm is at least four orders
of magnitude faster than the straightforward re-computation based
algorithm in large graphs.

5.2 Handling Edge Deletion
Consider the case of deleting an edge (u, v). Similarly, we have

two basic updating rules. First, for Rule 1, each tree-i with i >
cmin (cmin = min{cu, cv}) will not be updated after deleting an
edge (u, v), because all i-influential communities for i > cmin re-
main unchanged after removing (u, v). Second, for Rule 2, we
can also use Lemma 4 to handle the edge deletion case. To fur-
ther improve the efficiency, we also propose a minimum tree re-
computation method. For each tree-i with i = 1, · · · , cmin, we let
liw be the number of w’s neighbors whose timestamps are no less

Algorithm 8 EdgeInsertion(u, v)
Input: G = (V,E), and edge (u, v)
Output: The updated tree vertices
1: Updated core numbers for all nodes;
2: cmin ← min{cu, cv};
3: for i = 1 to cmin do
4: if r̃u < r̃

(i)
max or r̃v < r̃

(i)
max then

5: Continue;
6: if IsRecompute(u, v, i) then
7: Recompute all tree vertices for tree i;
8: if u or v’s core number is updated then
9: if r̃u ≥ r̃

(cmin+1)
max and r̃v ≥ r̃

(cmin+1)
max then

10: Recompute all tree vertices for tree cmin + 1;

11: Procedure bool IsRecompute (u, v, k)
12: R

(k)
min ← min{R(k)

u , R
(k)
v }, w̄ ← R

(k)
u < R

(k)
v ?u : v;

13: for all w ∈ ITk[R
(k)
min] do

14: lkw ← |{x|x ∈ N(w,G) ∧R
(k)
x ≥ R

(k)
w }|;

15: Let ū be the smallest weight node in ITk[R
(k)
min];

16: InsertionDFS(ū, k, ITk[R
(k)
min]);

17: return (lkw̄ ̸= −1);

18: Procedure InsertionDFS (u, k, ITk[R
(k)
min])

19: lku ← −1;
20: for all v ∈ N(u,G) do
21: if v /∈ ITk[R

(k)
min] or lkv = −1 then

22: Continue;
lkv ← lkv − 1;

23: if lkv < k then
24: InsertionDFS (v, k, ITk[R

(k)
min]);

Algorithm 9 EdgeDeletion(u, v)
Input: G = (V,E), and edge (u, v)
Output: The updated tree vertices
1: Updated core numbers for all nodes;
2: cmin ← min{cu, cv};
3: for i = 1 to cmin do
4: if r̃u < r̃

(i)
max or r̃v < r̃

(i)
max then

5: Continue;
6: Compute liu and liv ;
7: if liu < i or liv < i then
8: Recompute all tree vertices for tree i;

than w after deleting (u, v), i.e., liw = |{x|x ∈ N(w,G) ∧ R
(i)
x ≥

R
(i)
w }|. Below, we give a sufficient and necessary condition for up-

dating the tree vertices.
LEMMA 6. For each tree-i with i = 1, · · · , cmin, the tree ver-

tices in tree-i need to be updated after deleing (u, v), if and only if
liu < i or liv < i.

Based on Lemma 6, we can use liu and liv to determine whether
the tree vertices in tree-i need to be updated. The algorithm for
handling edge deletion is outlined in Algorithm 9, which integrates
both the basic updating rules and the minimum tree re-computation
method. In lines 4-5, we use Rule 2 for updating, and in lines 6-8,
we use the minimum tree re-computation method to update the tree
vertices. In the main loop (line 3), we use Rule 1 for updating.
The time complexity for checking all re-computation conditions
in Algorithm 9 (lines 6-7) is O(du + dv). In addition, it is worth
mentioning that both Algorithm 8 and Algorithm 9 do not increase
the space complexity for top-r k-influential communities search.

6. PERFORMANCE STUDIES
We conduct extensive experiments to evaluate the proposed al-

gorithms. To construct the ICP-Index, we implement both the ba-
sic (Algorithm 3) and the new (Algorithm 5) algorithms, denoted

516

Dataset n m dmax kmax

UK 18,520,486 298,113,762 194,955 943
Arabic 22,744,080 639,999,458 575,628 3,247

WebBase 118,142,155 1,019,903,190 816,127 1,506
Twitter 41,652,230 1,468,365,182 2,997,487 2,488

SK 50,636,154 1,949,412,601 8,563,816 4,510
FriSter 65,608,366 1,806,067,135 5,214 304

Table 2: Datasets
Parameter Range Default value

k 2, 4, 8, 16, 32, 64, 128, 256 32
r 5, 10, 20, 40, 80, 160, 320 40
n 20%, 40%, 60%, 80%, 100% 100%
m 20%, 40%, 60%, 80%, 100% 100%

Table 3: Parameters

10

100

1K

10K

100K

UK Arabic

W
ebBase

Twitter

SK FriSter

T
im

e
(S

ec
)

New
Basic

(a) Index-construction time

 2
 4
 6
 8

 10
 12
 14
 16
 18

UK Arabic

W
ebBase

Twitter

SK FriSter

Si
ze

 (
G

B
)

Graph Size
Index Size

(b) Index size
Figure 3: Index testing

by Basic and New respectively. For query processing, we imple-
ment four algorithms, named Online-All, Online-NCT, Index-All,
and Index-NCT, respectively. Online-All and Online-NCT are the
DFS-based online search algorithms (Algorithm 2) which are used
to compute the top-r k-influential communities and the top-r non-
contained k-influential communities respectively; Similarly, Index-
All and Index-NCT are the ICP-Index based algorithms used to
compute the top-r k-influential communities and the top-r non-
contained k-influential communities respectively. Note that we do
not implement the basic online search algorithm (Algorithm 1), as
it is impractical for many real-world graphs. All algorithms are im-
plemented in C++. All experiments are conducted on a computer
with 3.46GHz Intel Xeon X5690 (6-core) CPU and 96GB memory
running Red Hat Enterprise Linux 6.4 (64-bit). In all experiments,
both the graph and the ICP-Index are resident in main memory.
Datasets. We use six web-scale real-world graphs in our experi-
ments. The detailed statistics of our datasets are shown in Table
2. The first five datasets in Table 2 are downloaded from (ht
tp://law.di.unimi.it/datasets.php), and the FriS-
ter dataset is downloaded from (http://snap.stanford.ed
u). Among the six graphs, UK, Arabic, WebBase, and SK are web
graphs, and Twitter and FriSter are social networks.
Parameters. In all the experiments, without otherwise specified,
we use the PageRank score of node u to denote its weight, as
PageRank is a widely-used model to measure the influence (or im-
portance) of the nodes. For each dataset, we vary 4 parameters:
r (denoting the parameter of top-r), k (denoting the parameter of
k-influential community), the percentage of nodes n, and the per-
centage of edges m. The range of the parameters and their default
values are shown in Table 3. When varying m (or n) for scala-
bility testing, we extract subgraphs of 20%, 40% 60%, 80% and
100% edges (or nodes) of the original graph with a default value
of 100%. When varying a certain parameter, the values for all the
other parameters are set to their default values.
Exp-1: Index Construction. We build the ICP-Index for six graph-
s using both Basic and New. The index-construction time is shown
in Fig. 3(a). New is 5 to 10 times faster than Basic in all dataset-
s. Moreover, we can see that New is very efficient which takes
only 1,477 seconds (< 25 minutes) in the Twitter dataset (more
than 1 billion edges and 41 million nodes). This is because New
can avoid computing influential communities for all k values one
by one, which saves much computational cost. The result is also

consistent with the theoretical analysis shown in Theorem 8 and
Theorem 10. We further compare the size of the ICP-Index with
the size of the original graph. The results are depicted in Fig. 3(b).
Over all the datasets, the sizes of ICP-Index are almost the same as
the size of the original graph. This result confirms the theoretical
analysis shown in Theorem 6.
Exp-2: Query Processing (Vary k). We vary k from 2 to 256 and
evaluate the query processing time for the four proposed algorithms
by fixing r = 40. The results are reported in Fig. 4. In all datasets,
when k increases, the processing time of Online-All and Online-
NCT decreases. This is because when k increases, the size of the
maximal k-core decreases, and the time complexity of Online-All
and Online-NCT is dominated by traversing the maximal k-core.
Instead, when k increases, the processing time of both Index-All
and Index-NCT increases. This is because when k increases, the
size of the top-r results increases, and thus it takes more time to cal-
culate the top-r results for both Index-All and Index-NCT. When
k is small, Index-All and Index-NCT is several orders of magni-
tude faster than Online-All and Online-NCT, respectively. When
k is large, the advantages of Index-All and Index-NCT are not sig-
nificant. The reason is that, when k increases, the time cost for
traversing the k-core decreases, while the time spent on outputting
the top-r results increases. For instance, in UK, when the core num-
ber increases to 256, the time overhead for outputting the top-r re-
sults dominates the whole query processing time for all algorithms.
Thus, the processing time of all the algorithms are similar.
Exp-3: Query Processing (Vary r). We vary the parameter r from
5 to 320 and evaluate the query processing time of the four algo-
rithms by fixing k = 16. The results are shown in Fig. 5. Over all
datasets, we can see that the processing time of all the algorithms
increases with increasing r. For Online-All and Online-NCT, the
processing time increases very slowly. This is because for both
Online-All and Online-NCT, the dominant cost is spent on travers-
ing the maximal k-core other than outputting the top-r results. For
Index-All and Index-NCT, when r is small, the processing time in-
creases slowly. However, when r is large, the processing time of
Index-All increases while the processing time of Index-NCT still
keeps stable. The reason is that when r increases, the size of the
r-th answer in the top-r results for the Index-All algorithm tends
to increase. Thus, when r is large, a large number of redundant
subgraphs are outputted in the top-r results. For Index-NCT, when
r increases, the size of the r-th answer in the top-r results does
not significantly increase, thus the processing time of Index-NCT
keeps stable. For example, in the FriSter dataset, when r increases
to 320, the processing time of Index-All approaches the processing
time of Online-NCT and Online-All, indicating that a large num-
ber of redundant subgraphs are computed in Index-All. However,
in this case, Index-NCT is still very efficient, which is four orders
of magnitude faster than Index-All.
Exp-4: Scalability for Indexing. We vary the number of edges
(m) and nodes (n) in Twitter, SK, and FriSter datasets to study the
scalability of the index construction algorithms: Basic and New.
The results are reported in Fig. 6. As can be seen, both Basic and
New scale near linearly in most datasets. Moreover, we can see that
New is around one order of magnitude faster than Basic, which
is consistent with the previous observations. In addition, we also
report the scalability results for index size in Fig. 7. We can see that
the index size is nearly the same as the graph size over all testing
cases, which confirms the theoretical analysis shown in Section 4.
Exp-5: Scalability for Query Processing. We vary the number
of edges (m) and nodes (n) in Twitter, SK, and FriSter datasets
to evaluate the scalability of the proposed query processing algo-
rithms. Fig. 8 depicts the results. As desired, the query processing
time for the online search algorithms (Online-All and Online-NCT)
increases with increasing graph size. However, for the index-based
algorithms (Index-All and Index-NCT), the query processing time

517

1e-3

0.01

0.1

1

10

100

1K

2 4 8 16 32 64 128 256

T
im

e
(S

ec
)

Online-All

Online-NCT

Index-All

Index-NCT

(a) UK (vary k)

1e-3

0.01

0.1

1

10

100

1K

10K

2 4 8 16 32 64 128 256

T
im

e
(S

ec
)

Online-All

Online-NCT

Index-All

Index-NCT

(b) Arabic (vary k)

1e-3

0.01

0.1

1

10

100

1K

2 4 8 16 32 64 128 256

T
im

e
(S

ec
)

Online-All

Online-NCT

Index-All

Index-NCT

(c) WebBase (vary k)

1e-3

0.01

0.1

1

10

100

1K

10K

2 4 8 16 32 64 128 256

T
im

e
(S

ec
)

Online-All

Online-NCT

Index-All

Index-NCT

(d) Twitter (vary k)

1e-3

0.01

0.1

1

10

100

1K

10K

2 4 8 16 32 64 128 256

T
im

e
(S

ec
)

Online-All

Online-NCT

Index-All

Index-NCT

(e) SK (vary k)

1e-3

0.01

0.1

1

10

100

1K

10K

100K

2 4 8 16 32 64 128 256

T
im

e
(S

ec
)

Online-All

Online-NCT

Index-All

Index-NCT

(f) FriSter (vary k)

Figure 4: Query processing testing (Vary k)

1e-3

0.01

0.1

1

10

100

1K

5 10 20 40 80 160 320

T
im

e
(S

ec
)

Online-All

Online-NCT

Index-All

Index-NCT

(a) UK (vary r)

1e-3

0.01

0.1

1

10

100

1K

10K

5 10 20 40 80 160 320

T
im

e
(S

ec
)

Online-All

Online-NCT

Index-All

Index-NCT

(b) Arabic (vary r)

1e-3

0.01

0.1

1

10

100

1K

10K

5 10 20 40 80 160 320

T
im

e
(S

ec
)

Online-All

Online-NCT

Index-All

Index-NCT

(c) WebBase (vary r)

1e-3

0.01

0.1

1

10

100

1K

10K

5 10 20 40 80 160 320

T
im

e
(S

ec
)

Online-All

Online-NCT

Index-All

Index-NCT

(d) Twitter (vary r)

1e-3

0.01

0.1

1

10

100

1K

10K

5 10 20 40 80 160 320

T
im

e
(S

ec
)

Online-All

Online-NCT

Index-All

Index-NCT

(e) SK (vary r)

1e-3

0.01

0.1

1

10

100

1K

10K

5 10 20 40 80 160 320

T
im

e
(S

ec
)

Online-All

Online-NCT

Index-All

Index-NCT

(f) FriSter (vary r)

Figure 5: Query processing testing (Vary r)

100

1K

10K

100K

20% 40% 60% 80% 100%

T
im

e
(S

ec
)

New
Basic

(a) Twitter (vary m)

10

100

1K

10K

100K

20% 40% 60% 80% 100%

T
im

e
(S

ec
)

New
Basic

(b) Twitter (vary n)

100

1K

10K

100K

20% 40% 60% 80% 100%

T
im

e
(S

ec
)

New
Basic

(c) SK (vary m)

10

100

1K

10K

100K

20% 40% 60% 80% 100%

T
im

e
(S

ec
)

New
Basic

(d) SK (vary n)

100

1K

10K

100K

20% 40% 60% 80% 100%

T
im

e
(S

ec
)

New
Basic

(e) FriSter (vary m)

10

100

1K

10K

100K

20% 40% 60% 80% 100%

T
im

e
(S

ec
)

New
Basic

(f) FriSter (vary n)

Figure 6: Scalability testing (Index time)

 2

 4

 6

 8

 10

 12

20% 40% 60% 80% 100%

Si
ze

 (
G

B
)

Graph Size
Index Size

(a) Twitter (vary m)

 0

 2

 4

 6

 8

 10

 12

20% 40% 60% 80% 100%

Si
ze

 (
G

B
)

Graph Size
Index Size

(b) Twitter (vary n)

 2
 4
 6
 8

 10
 12
 14
 16
 18

20% 40% 60% 80% 100%

Si
ze

 (
G

B
)

Graph Size
Index Size

(c) SK (vary m)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

20% 40% 60% 80% 100%

Si
ze

 (
G

B
)

Graph Size
Index Size

(d) SK (vary n)

 2
 4
 6
 8

 10
 12
 14
 16
 18

20% 40% 60% 80% 100%

Si
ze

 (
G

B
)

Graph Size
Index Size

(e) FriSter (vary m)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

20% 40% 60% 80% 100%

Si
ze

 (
G

B
)

Graph Size
Index Size

(f) FriSter (vary n)

Figure 7: Scalability testing (Index size)

1e-3

0.01

0.1

1

10

100

1K

10K

20% 40% 60% 80% 100%

T
im

e
(S

ec
)

Online-All

Online-NCT

Index-All

Index-NCT

(a) Twitter (vary m)

1e-3

0.01

0.1

1

10

100

1K

10K

20% 40% 60% 80% 100%

T
im

e
(S

ec
)

Online-All

Online-NCT

Index-All

Index-NCT

(b) Twitter (vary n)

1e-3

0.01

0.1

1

10

100

1K

10K

20% 40% 60% 80% 100%

T
im

e
(S

ec
)

Online-All

Online-NCT

Index-All

Index-NCT

(c) SK (vary m)

1e-3

0.01

0.1

1

10

100

1K

10K

100K

20% 40% 60% 80% 100%

T
im

e
(S

ec
)

Online-All

Online-NCT

Index-All

Index-NCT

(d) SK (vary n)

1e-3

0.01

0.1

1

10

100

1K

10K

20% 40% 60% 80% 100%

T
im

e
(S

ec
)

Online-All

Online-NCT

Index-All

Index-NCT

(e) FriSter (vary m)

1e-3

0.01

0.1

1

10

100

1K

10K

20% 40% 60% 80% 100%

T
im

e
(S

ec
)

Online-All

Online-NCT

Index-All

Index-NCT

(f) FriSter (vary n)

Figure 8: Scalability testing (Query processing time)

(a) top-1 for k = 4 (b) top-2 for k = 4 (c) top-3 for k = 4 (d) top-1 for k = 6 (e) top-2 for k = 6 (f) top-3 for k = 6

(g) top-1 for k = 8 (h) top-2 for k = 8 (i) top-3 for k = 8 (j) top-1 for k = 10 (k) top-2 for k = 10 (l) top-3 for k = 10

Figure 9: Case study: results for different k and r.

does not significantly increase when the graph size increases. The
reason is that the processing time of Index-All and Index-NCT are
mainly dependent on the size of the top-r communities, and the
size of the top-r communities is not largely affected by the size of
the graph. As a result, in all testing cases, Index-All and Index-
NCT are at least one order of magnitude faster than Online-All and
Online-NCT, respectively.
Exp-6: Dynamic Update. In this experiment, we evaluate the
efficiency of the proposed index updating algorithms. We com-
pare three algorithms which are Ba, Ne, and Recompute. Ba is
the algorithm using two basic updating rules; Ne is the algorith-

Dataset Ins (Ba) Del (Ba) Ins (Ne) Del (Ne) Recompute
UK 2.460 2.188 0.148 0.107 67.27

Arabic 9.658 9.483 0.798 0.466 518.36
WebBase 0.522 0.483 0.201 0.175 331.74
Twitter 66.500 64.947 0.035 0.001 1211.39

SK 2.936 2.940 0.507 0.298 897.41
FriSter 6.074 6.076 0.203 0.001 1919.56

Table 4: Update Time Per Edge (in Seconds)

m using both two basic updating rules and the minimum tree re-
computation method (Algorithm 8 and Algorithm 9); Recompute
is the straightforward updating algorithm which uses Algorithm 5

518

(a) top-1 (ML) (b) top-2 (IR) (c) top-3 (BN)
Figure 10: Top-3 results using labels for weights (k = 6)

(a) C1 (b) C2

(c) C3 (d) C4

Figure 11: Four truss communities containing “Jiawei Han”
to re-compute all tree vertices when the graph is updated by an
edge insertion/deletion. In all testings, we set rmax = 100, 000.
For each dataset, we randomly delete 1K edges, and update the in-
dex after every deletion, and then we insert the same 1K edges and
update the index after every insertion. The average update time per
edge insertion/deletion is reported in Table 4. From Table 4, we
can make the following observations. Compared to Recompute,
Ba can significantly reduce the cost of maintaining the tree ver-
tices. For example, in WebBase, Ba only takes 0.5 seconds to
maintain all the tree vertices for either insertion or deletion, while
Recompute requires more than 330 seconds. However, only ap-
plying the basic updating rules may be still inefficient. For ex-
ample, in Twitter, Ba needs more than 60 seconds for each edge
insertion/deletion which is inefficient. Ne, however, can signifi-
cantly cut the updating time of Ba by applying the minimum tree
re-computation method. For instance, in the Twitter dataset, by
using Ne, the updating time for an edge insertion/deletion is re-
duced from 66.5/64.9 seconds to 0.035/0.001 seconds. For Ne,
handling edge deletion is more efficient than handling edge inser-
tion, because checking the re-computation condition for edge in-
sertion needs to invoke a DFS procedure (see Algorithm 8). In
general, we can see that the updating time of Ne is several orders
of magnitude faster than the straightforward re-computation based
method (Recompute) over all datasets, which confirms the theoret-
ical analysis in Section 5.
6.1 Case studies

We use a co-authorship network extracted from ArnetMiner (ht
tp://arnetminer.org) for case studies. The dataset con-
sists of authors in different research areas including database, da-
ta mining, semantic web, machine learning, information retrieval,
Bayesian network, and so on. The graph contains 5411 nodes and
17,477 edges. Each author (node) is associated with a label, de-
noting the research area of that author. Based on this dataset, we
conduct three various case studies to evaluate the effectiveness of
the k-influential community model.
Results for different k and r. In this case study, we use the num-
ber of publications to denote the weight of an author. We vary k
from 4 to 10, and generate the top-3 non-contained k-influential
communities for each k value. The results are depicted in Fig. 9.
As can be seen, for a certain k, the top results of the non-contained
k-influential communities tend to cover high influential researchers
in different research areas. For example, when k = 4, the top-1 re-
sult includes high-influential researchers in database area, the top-2
result contains high-influential researchers in data mining area, and
the top-3 result consists of high-influential researchers in semantic

web area. The researchers in each community are highly connect-
ed with each other, and each of them plays an leading role in the
specific research area. These results indicate that the k-influential
community model is indeed capable of capturing both influence and
cohesiveness of a community.

In addition, we can see that the parameter k can balance the
tradeoff between influence and cohesiveness of a community. In
general, the influence value of a community decreases with increas-
ing k. For instance, comparing Fig. 9(a) with Fig. 9(d), when k
increases from 4 to 6, some high influential researchers such as
“H. V. Jagadish” and “Beng Chin Ooi” leave the community, while
some other researchers are added into the community, forming a
more cohesive but relatively lower influential community. The rea-
son is that when k increases, the cohesiveness constraint in the k-
influential community model becomes more strict, which may ex-
clude some high influential nodes from the community, and thus
may reduce the influence of the community. For a practical recom-
mendation, if the user wants to find a high influential community, a
small k is preferred, while if the user aims at finding a high cohe-
sive but relatively low influential community, a large k is preferred.
Using labels for weights. In this case study, we use the labels for
weights to study the effectiveness of the k-influential community
model. Specifically, we first give different weights for different la-
bels. Then, we rank the nodes based on the weights, and break ties
based on the number of publications. Fig. 10 reports the results for
k = 6 given that the weights of different labels are ranked as “Ma-
chine Learning (ML)” > “Information Retrieval (IR)” > “Bayesian
Network (BN)”, and so on. Similar results can also be observed for
different k values (e.g., k = 8) and different weighting methods.
From Fig. 10, we can see that the top-3 results are consistent with
our weighting method (the top-1 result is a “Machine Learning”
community, the top-2 result is a “Information Retrieval” commu-
nity, and the top-3 result is a “Bayesian Network” community).
These results suggest that the k-influential community model can
also capture user-specified definition of influence. In practice, the
users can define the influence based on their preferences, and our
proposed methods can be applied to identify the influential com-
munities based on user-defined influence.
Comparison with truss community. Here we compare the pro-
posed community model with the truss community model [15],
which is successfully applied to find query-dependent cohesive com-
munities in a large network. For a fair comparison, we compare the
k-influential community with the k + 1 truss community. This is
because a k+1 truss is a k-core [24], and our k-influential commu-
nity is based on k-core. Below, we consider the case when k = 4.
Similar conclusions can also be made for other k values. Fig. 11
depicts four 5-truss communities containing “Jiawei Han”. From
Fig. 11, we can see that the 5-truss communities mainly contains
professor Jiawei Han’s students or research fellows. However, in
our 4-influential community model, professor Jiawei Han’s com-
munity (see Fig. 9(b)) includes many other influential researchers
in data mining area who have a co-author relationship with “Jiawei
Han”. The reason is that the k-truss community only captures the
cohesiveness of a community, while our k-influential community
not only captures the cohesiveness, but it also considers the influ-
ence of a community. Therefore, in practice, if the users wants
to find the influential communities in a network, our community
model is much better than the k-truss community model.

7. RELATED WORK
Community search and discovery. Sozio et al. [22] studied the
community search problem in social networks where the goal is to
find the maximal connected k-core with maximal k value that con-
tains the query nodes. In [22], the authors proposed a linear-time
algorithm to solve the community search problem. Recently, Cui
et al. [11] proposed a more efficient local search algorithm for the
same problem. Except the maximal k-core-based model, Cui et

519

al. [10] proposed an α-adjacency γ-quasi-k-clique model to study
the overlap community search problem. More recently, Huang et
al. [15] studied the community search problem based on a k-truss
community model. In addition, another related but different prob-
lem is community discovery, which is to discover all the communi-
ties in a network. This issue is extensively studied in the literature.
Two surveys on this topic can be found in [12, 26]. All the men-
tioned work do not consider the influence of a community. In this
paper, we study the influential community search problem, and our
goal is to find the most influential communities in a network.
Cohesive subgraph mining. Cohesive subgraph is an important
concept in social network analysis. There are many different defi-
nitions of cohesive graphs in the literature, which consists of maxi-
mal clique [5, 6], k-core [21, 4, 16], k-truss [8, 24], DN-graph [25],
maximal k-edge connected subgraph [29, 3, 1], and so on. Due
to a large number of applications, the cohesive subgraph mining
problem has attracted much attention in recent years. For exam-
ple, James et al. proposed a series of external-memory algorithms
for finding and enumerating maximal clique [5, 6], and for k-core
[4] and k-truss [24] decomposition in massive graphs. Interesting-
ly, many equivalent concepts of k-truss were independently pro-
posed in different papers. For instance, in [19], Saito and Yamada
termed the k-truss k-dense community, and this term was also fol-
lowed in [13]; In [23], k-truss is termed k-brace; In [27], Zhang and
Parthasarathy termed the k-truss triangle k-core, and in [28], Zhao
and Tung termed the k-truss k-mutual-friend subgraph. DN-graph
was proposed in [25] which is closely related k-truss. Unlike k-
truss, the problem of mining the DN-graphs is NP-hard. The maxi-
mal k-edge connected subgraph (MkCS), also called structural co-
hesion in sociology [18], is typically more cohesive than k-core
and k-truss. Recently, several efficient algorithms were proposed
to compute the MkCS. For instance, in [29], Zhou et al. proposed
several pruning techniques to speed up the MkCS mining algorith-
m. In [3], Chang et al. presented a linear-time algorithm based on
a graph decomposition framework. In [1], Akiba et al. proposed a
linear-time randomized algorithm for the same problem based on a
random edge contraction technique.

8. CONCLUSION
We study a problem of finding the top-r influential communi-

ties in a network. We propose a new community model called k-
influential community to capture the influence of a community. To
find the top-r k-influential communities efficiently, we propose a
linear-time online search algorithm and an optimal index-based al-
gorithm. Our index structure only takes linear space, and can be
constructed efficiently. We also develop an efficient algorithm to
maintain the index when the graph is frequently updated. Finally,
extensive experiments on 7 large real-world networks demonstrate
the efficiency and effectiveness of our algorithms.

Acknowledgements. The work was supported in part by (i) NS-
FC Grants (61402292, 61170076, U1301252, 61033009) and Nat-
ural Science Foundation of SZU (grant no. 201438); (ii) ARC
DE140100999; (iii) Research Grants Council of the Hong Kong
SAR, China, 14209314 and 418512; (iv) China 863 (no. 2012AA010239)
and Guangdong Key Laboratory Project (2012A061400024).

9. REFERENCES
[1] T. Akiba, Y. Iwata, and Y. Yoshida. Linear-time enumeration

of maximal k-edge-connected subgraphs in large networks
by random contraction. In CIKM, 2013.

[2] V. Batagelj and M. Zaversnik. An O(m) algorithm for cores
decomposition of networks. CoRR, cs.DS/0310049, 2003.

[3] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, and W. Liang.
Efficiently computing k-edge connected components via
graph decomposition. In SIGMOD, 2013.

[4] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu. Efficient core
decomposition in massive networks. In ICDE, 2011.

[5] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu. Finding
maximal cliques in massive networks. ACM Trans. Database
Syst., 36(4):21, 2011.

[6] J. Cheng, L. Zhu, Y. Ke, and S. Chu. Fast algorithms for
maximal clique enumeration with limited memory. In KDD,
2012.

[7] N. Chiba and T. Nishizeki. Arboricity and subgraph listing
algorithms. SIAM J. Comput., 14(1):210–223, 1985.

[8] J. Cohen. Trusses: Cohesive subgraphs for social network
analysis. Technique report, 2005.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms (3. ed.). MIT Press, 2009.

[10] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang. Online
search of overlapping communities. In SIGMOD, 2013.

[11] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local search of
communities in large graphs. In SIGMOD, 2014.

[12] S. Fortunato. Community detection in graphs. Physics
Reports, 486(3-5):75–174, 2010.

[13] E. Gregori, L. Lenzini, and C. Orsini. k-dense communities
in the internet as-level topology graph. Computer Networks,
57(1):213–227, 2013.

[14] X. Hu, Y. Tao, and C.-W. Chung. Massive graph
triangulation. In SIGMOD, 2013.

[15] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu.
Querying k-truss community in large and dynamic graphs.
SIGMOD, 2014.

[16] R. Li, J. X. Yu, and R. Mao. Efficient core maintenance in
large dynamic graphs. IEEE Trans. Knowl. Data Eng.,
26(10):2453–2465, 2014.

[17] M. C. Lin, F. J. Soulignac, and J. L. Szwarcfiter. Arboricity,
h-index, and dynamic algorithms. Theor. Comput. Sci.,
426:75–90, 2012.

[18] J. Moody and D. R. White. Structural cohesion and
embeddedness: A hierarchical concept of social groups.
American Sociological Review, 68:103–127, 2003.

[19] K. Saito and T. Yamada. Extracting communities from
complex networks by the k-dense method. In ICDM
Workshops, 2006.

[20] A. E. Sariyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and
Ü. V. Çatalyürek. Streaming algorithms for k-core
decomposition. PVLDB, 6(6):433–444, 2013.

[21] S. B. Seidman. Network structure and minimum degree.
Social networks, 5(3):269–287, 1983.

[22] M. Sozio and A. Gionis. The community-search problem and
how to plan a successful cocktail party. In KDD, 2010.

[23] J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg.
Structural diversity in social contagion. PNAS, 2011.

[24] J. Wang and J. Cheng. Truss decomposition in massive
networks. PVLDB, 5(9):812–823, 2012.

[25] N. Wang, J. Zhang, K.-L. Tan, and A. K. H. Tung. On
triangulation-based dense neighborhood graphs discovery.
PVLDB, 4(2):58–68, 2010.

[26] J. Xie, S. Kelley, and B. K. Szymanski. Overlapping
community detection in networks: The state-of-the-art and
comparative study. ACM Comput. Surv., 45(4):43, 2013.

[27] Y. Zhang and S. Parthasarathy. Extracting, analyzing and
visualizing triangle k-core motifs within networks. In ICDE,
2012.

[28] F. Zhao and A. K. H. Tung. Large scale cohesive subgraphs
discovery for social network visual analysis. PVLDB,
6(2):85–96, 2012.

[29] R. Zhou, C. Liu, J. X. Yu, W. Liang, B. Chen, and J. Li.
Finding maximal k-edge-connected subgraphs from a large
graph. In EDBT, 2012.

520

