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ABSTRACT
This paper proposes a new approach for approximate evaluation
of #P-hard queries with probabilistic databases. In our approach,
every query is evaluated entirely in the database engine by evaluat-
ing a fixed number of query plans, each providing an upper bound
on the true probability, then taking their minimum. We provide
an algorithm that takes into account important schema information
to enumerate only the minimal necessary plans among all possi-
ble plans. Importantly, this algorithm is a strict generalization of
all known results of PTIME self-join-free conjunctive queries: A
query is safe if and only if our algorithm returns one single plan.
We also apply three relational query optimization techniques to
evaluate all minimal safe plans very fast. We give a detailed ex-
perimental evaluation of our approach and, in the process, provide
a new way of thinking about the value of probabilistic methods over
non-probabilistic methods for ranking query answers.

1. INTRODUCTION
Probabilistic inference over large data sets is becoming a cen-
tral data management problem. Recent large knowledge bases,
such as Yago [27], Nell [5], DeepDive [9], or Google’s Knowl-
edge Vault [14], have millions to billions of uncertain tuples. Data
sets with missing values are often “completed” using inference in
graphical models [6, 52] or sophisticated low rank matrix factoriza-
tion techniques [15, 51], which ultimately results in a large, prob-
abilistic database. Data sets that use crowdsourcing are also un-
certain [1]. And, very recently, probabilistic databases have been
applied to bootstrapping over samples of data [55].

However, probabilistic inference is known to be #P-hard in the
size of the database, even for some very simple queries [7]. To-
day’s state of the art inference engines use either sampling-based
methods or are based on some variant of the DPLL algorithm for
Weighted Model Counting. For example, Tuffy [36], a popular im-
plementation of Markov Logic Networks (MLN) over relational
databases, uses Markov Chain Monte Carlo methods (MCMC).
Gibbs sampling can be significantly improved by adapting some
classical relational optimization techniques [56]. For another ex-
ample, MayBMS [3] and its successor Sprout [39] use query plans
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to guide a DPLL-based algorithm for Weighted Model Count-
ing [25]. While both approaches deploy some advanced relational
optimization techniques, at their core they are based on general pur-
pose probabilistic inference techniques, which either run in expo-
nential time (DPLL-based algorithms have been proven recently to
take exponential time even for queries computable in polynomial
time [4]), or require many iterations until convergence.

In this paper, we propose a different approach to query evalu-
ation with probabilistic databases. In our approach, every query
is evaluated entirely in the database engine. Probability computa-
tion is done at query time, using simple arithmetic operations and
aggregates. Thus, probabilistic inference is entirely reduced to a
standard query evaluation problem with aggregates. There are no
iterations and no exponential blowups. All benefits of relational en-
gines (such as cost-based optimizations, multi-core query process-
ing, shared-nothing parallelization) are directly available to queries
over probabilistic databases. To achieve this, we compute approx-
imate rather than exact probabilities, with a one-sided guarantee:
The probabilities are guaranteed to be upper bounds to the true
probabilities, which we show is sufficient to rank the top query
answers with high precision. Our approach consists of approxi-
mating the true query probability by evaluating a fixed number of
“safe queries” (the number depends on the query), each providing
an upper bound on the true probability, then taking their minimum.

We briefly review “safe queries,” which are queries whose data
complexity is in PTIME. They can be evaluated using safe query
plans [7, 17, 53], which are related to a technique called lifted
inference in the AI literature [12, 28]; the entire computation is
pushed inside the database engine and is thus efficient. For ex-
ample, the query q1(z) :−R(z,x),S(x,y),K(x,y) has the safe query
plan P1 = πz(R 1x (πx(S 1x,y K))), where every join operator mul-
tiplies the probabilities, and every projection with duplicate elim-
ination treats probabilistic events as independent. The literature
describes several classes of safe queries [8, 17] and shows that they
can be evaluated very efficiently. However, most queries are “un-
safe:” They are provably #P-hard and do not admit safe plans.

In this paper, we prove that every conjunctive query without self-
joins can be approximated by a fixed number of safe queries, called
“safe dissociations” of the original query. Every safe dissocia-
tion is guaranteed to return an upper bound on the true probabil-
ity and can be evaluated in PTIME data complexity. The num-
ber of safe dissociations depends only on the query and not the
data. Moreover, we show how to find “minimal safe dissociations”
which are sufficient to find the best approximation to the given
query. For example, the unsafe query q2(z) :−R(z,x),S(x,y),T (y)
has two minimal safe dissociations, q′2(z) :−R(z,x),S(x,y),T ′(x,y)
and q′′2(z) :−R′(z,x,y),S(x,y),T (y). Both queries are safe and, by
setting the probability of every tuple R′(z,x,y) equal to that of
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R(z,x) and similarly for T ′, they return an upper bound for the
probabilities of each answer tuple from q2(z). One benefit of our
approach is that, if the query happens to be safe, then it has a unique
minimal safe dissociation, and our algorithm finds it.

Contributions. (1) We show that there exists a 1-to-1 correspon-
dence between the safe dissociations of a self-join-free conjunctive
query and its query plans. One simple consequence is that every
query plan computes an upper bound of the true probability. For
example, the two safe dissociations above correspond to the plans
P′2 = πz(R 1x (πx(S 1x,y T ))), and P′′2 = πz((πzy(R 1x S)) 1y T ).
We give an intuitive system R-style algorithm [48] for enumerating
all minimal safe dissociations of a query q. Our algorithm takes
into account important schema-level information: functional de-
pendencies and whether a relation is deterministic or probabilistic.
We prove that our algorithm has several desirable properties that
make it a strict generalization of previous algorithms described
in the literature: If q is safe then the algorithm returns only one
safe plan that computes q exactly; and if q happens to be safe on
the particular database instance (e.g., the data happens to satisfy
a functional dependency), then one of the minimal safe dissocia-
tions will compute the query exactly. (2) We use relational opti-
mization techniques to compute all minimal safe dissociations of a
query efficiently in the database engine. Some queries may have a
large number of dissociations; e.g., a 8-chain query has 4279 safe
dissociations, of which 429 are minimal. Computing 429 queries
sequentially in the database engine would still be prohibitively ex-
pensive. Instead, we tailor three relational query optimization tech-
niques to dissociation: (i) combining all minimal plans into one
single query, (ii) reusing common subexpressions with views, and
(iii) performing deterministic semi-join reductions. (3) We conduct
an experimental validation of our technique, showing that, with all
our optimizations enabled, computing hard queries over probabilis-
tic databases incurs only a modest penalty over computing the same
query on a deterministic database: For example, the 8-chain query
runs only a factor of < 10 slower than on a deterministic database.
We also show that the dissociation-based technique has high preci-
sion for ranking query answers based on their output probabilities.

In summary, our three main contributions are:
(1) We describe an efficient algorithm for finding all minimal

safe dissociations for self-join-free conjunctive queries in the
presence of schema knowledge. If the query is safe, then our
algorithm returns a single minimal plan, which is the safe
plan for the query (Section 3).

(2) We show how to apply three traditional query optimization
techniques to dramatically improve the performance of the
dissociation (Section 4).

(3) We perform a detailed experimental validation of our ap-
proach, showing both its effectiveness in terms of query per-
formance, and the quality of returned rankings. Our experi-
ments also include a novel comparison between deterministic
and probabilistic ranking approaches (Section 5).

All proofs for this submission together with additional illustrating
examples are available in our technical report on arXiv [21].

2. BACKGROUND
Probabilistic Databases. We fix a relational vocabulary σ =

(R1, . . . ,Rm). A probabilistic database D is a database plus a func-
tion p(t) ∈ [0,1] associating a probability to each tuple t ∈ D. A
possible world is a subset of D generated by independently in-
cluding each tuple t in the world with probability p(t). Thus, the
database D is tuple-independent. We use bold notation (e.g., x)
to denote sets or tuples. A self-join-free conjunctive query is a
first-order formula q(y) = ∃x1 . . .∃xk.(a1 ∧ . . .∧ am) where each

atom ai represents a relation Ri(xi)
1, the variables x1, . . . ,xk are

called existential variables, and y are called the head variables
(or free variables). The term “self-join-free” means that the atoms
refer to distinct relational symbols. We assume therefore w.l.o.g.
that every relational symbol R1, . . . ,Rm occurs exactly once in the
query. Unless otherwise stated, a query in this paper denotes a self-
join-free conjunctive query. As usual, we abbreviate the query by
q(y) :−a1, . . . ,am, and write HVar(q) = y, EVar(q) = {x1, . . . ,xk}
and Var(q) = HVar(q)∪EVar(q) for the set of head variables, ex-
istential variables, and all variables of q. If HVar(q) = /0 then q is
called a Boolean query. We also write Var(ai) for the variables in
atom ai and at(x) for the set of atoms that contain variable x. The
active domain of a variable xi is denoted ADomxi ,

2 and the active
domain of the entire database is ADom =

⋃
i ADomxi . The focus of

probabilistic query evaluation is to compute P(q); i.e. the probabil-
ity that the query is true in a randomly chosen world.

Safe queries, safe plans. It is known that the data complexity of
any query q is either in PTIME or #P-hard. The former are called
safe queries and are characterized precisely by a syntactic property
called hierarchical queries [7]. We briefly review these results:

DEFINITION 1 (HIERARCHICAL QUERY). Query q is called hier-
archical iff for any x,y ∈ EVar(q), one of the following three con-
ditions hold: at(x)⊆ at(y), at(x)∩at(y) = /0, or at(x)⊇ at(y).

For example, the query q1 :−R(x,y),S(y,z),T (y,z,u) is hierarchi-
cal, while q2 :−R(x,y),S(y,z),T (z,u) is not, as neither of the three
conditions holds for the variables y and z.

THEOREM 2 (DICHOTOMY [7]). If q is hierarchical, then P(q)
can be computed in PTIME in the size of D. Otherwise, computing
P(q) is #P-hard in the size of D.

We next give an equivalent, recursive characterization of hier-
archical queries, for which we need a few definitions. We write
SVar(q) for the separator variables (or root variables); i.e. the set
of existential variables that appear in every atom. q is disconnected
if its atoms can be partitioned into two non-empty sets that do not
share any existential variables (e.g., q :−R(x,y),S(z,u),T (u,v) is
disconnected and has two connected components: “R(x,y)” and
“S(z,u),T (u,v)”). For every set of variables x, denote q− x the
query obtained by removing all variables x (and decreasing the ar-
ities of the relation symbols that contain variables from x).

LEMMA 3 (HIERARCHICAL QUERIES). q is hierarchical iff ei-
ther: (1) q has a single atom; (2) q has k≥ 2 connected components
all of which are hierarchical; or (3) q has a separator variable x
and q− x is hierarchical.

DEFINITION 4 (QUERY PLAN). Let R1, . . . ,Rm be a relational
vocabulary. A query plan P is given by the grammar

P ::=Ri(x) | πxP | 1
[
P1, . . . ,Pk

]

where Ri(x) is a relational atom containing the variables x and
constants, πx is the project operator with duplicate elimination, and
1
[
. . .
]

is the natural join in prefix notation, which we allow to be
k-ary, for k ≥ 2. We require that joins and projections alternate in
a plan. We do not distinguish between join orders, i.e. 1

[
P1,P2

]
is

the same as 1
[
P2,P1

]
.

We write HVar(P) for the head variables of P (defined as the vari-
ables x of the top-most projection πx, or the union of the top-most
1We assume w.l.o.g. that xi is a tuple of only variables without constants.
2Defined formally as ADomxi =

⋃
j:xi∈Var(R j )

πxi (R j).
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projections if the last operation is a join). Every plan P represents
a query qP defined by taking all atoms mentioned in P and setting
HVar(qP) = HVar(P). For notational convenience, we also use the
“project-away” notation, by writing π−y(P) instead of πx(P), where
y are the variables being projected away; i.e. y = HVar(P)−x.

Given a probabilistic database D and a plan P, each output tuple
t ∈ P(D) has a score(t), defined inductively on the structure of P as
follows: If t ∈ Ri(x), then score(t) = p(t), i.e. its probability in D;
if t ∈1

[
P1(D), . . . ,Pk(D)

]
where t =1

[
t1, . . . , tk

]
, then score(t) =

∏
k
i=1 score(ti); and if t ∈ πx(P(D)), and t1, . . . , tn ∈ P(D) are all the

tuples that project into t, then score(t) = 1−∏
n
i=1(1− score(ti)).

In other words, score computes a probability by assuming that all
tuples joined by 1 are independent, and all duplicates eliminated by
π are also independent. If these conditions hold, then score is the
correct query probability, but in general the score is different from
the probability. Therefore, score is not equal to the probability, in
general, and is also called an extensional semantics [18, 41]. For a
Boolean plan P, we get one single score, which we denote score(P).

The requirement that joins and projections alternate is w.l.o.g.
because nested joins like 1

[
1
[
R1,R2

]
,R3
]

can be rewritten into
1
[
R1,R2,R3

]
while keeping the same probability score. For the

same reason we do not distinguish between different join orders.

DEFINITION 5 (SAFE PLAN). A plan P is called safe iff, for any
join operator 1p[P1, . . . ,Pk

]
, all subplans have the same head vari-

ables: HVar(Pi) = HVar(Pj) for all 1≤ i, j ≤ k.

The recursive definition of Lemma 3 gives us immediately a safe
plan for a hierarchical query. Conversely, every safe plan defines a
hierarchical query. The following summarizes our discussion:

PROPOSITION 6 (SAFETY [7]). (1) Let P be a plan for the query
q. Then score(P) =P(q) for any probabilistic database iff P is safe.
(2) Assuming #P6=PTIME, a query q is safe (i.e. P(q) has PTIME
data complexity) iff it has a safe plan P; in that case the safe plan
is unique, and P(q) = score(P).

Boolean Formulas. Consider a set of Boolean variables X =
{X1,X2, . . .} and a probability function p : X → [0,1]. Given a
Boolean formula F , denote P(F) the probability that F is true
if each variable Xi is independently true with probability p(Xi).
In general, computing P(F) is #P-hard in the number of vari-
ables X. If D is a probabilistic database then we interpret ev-
ery tuple t ∈ D as a Boolean variable and denote the lineage
of a Boolean q :−a1, . . . ,am on D as the Boolean DNF formula
Fq,D =

∨
θ :θ |=q θ(a1)∧ ·· · ∧ θ(am), where θ ranges over all as-

signments of EVar(q) that satisfy q on D. It is well known that
P(q) = P

(
Fq,D

)
. In other words the probability of a Boolean query

is the same as the probability of its lineage formula.

EXAMPLE 7 (LINEAGE). If F = XY ∨ XZ then P(F) = p(1−
(1−q)(1−r)) = pq+ pr− pqr, where p = p(X),q = p(Y ), and
r = p(Z). Consider now the query q :−R(x),S(x,y) over the data-
base D = {R(1),R(2),S(1,4),S(1,5)}. Then the lineage formula is
Fq,D = R(1)∧S(1,4)∨R(1)∧S(1,5), i.e. same as F, up to variable
renaming. It is now easy to see that P(q) = P

(
Fq,D

)
.

A key technique that we use in this paper is the following result
from [22]: Let F,F ′ be two Boolean formulas with sets of vari-
ables X and X′, respectively. We say that F ′ is a dissociation of
F if there exists a substitution θ : X′ → X such that F ′[θ ] = F .
If θ−1(X) = {X ′,X ′′, . . .} then we say that the variable X disso-
ciates into X ′,X ′′, . . .; if |θ−1(X)| = 1 then we assume w.l.o.g.
that θ−1(X) = X (up to variable renaming) and we say that X

does not dissociate. Given a probability function p : X→ [0,1],
we extend it to a probability function p′ : X′ → [0,1] by setting
p′(X ′) = p(θ(X ′)). Then, we have shown:

THEOREM 8 (OBLIVIOUS DNF BOUNDS [22]). Let F ′ be a
monotone DNF formula that is a dissociation of F through the sub-
stitution θ . Assume that for any variable X, no two distinct disso-
ciations X ′,X ′′ of X occur in the same prime implicant of F ′. Then
(1) P(F)≤ P(F ′), and (2) if all dissociated variables X ∈X are de-
terministic (meaning: p(X) = 0 or p(X) = 1) then P(F) = P(F ′).

Intuitively, a dissociation F ′ is obtained from a formula F by tak-
ing different occurrences of a variable X and replacing them with
fresh variables X ′,X ′′, . . .; in doing this, the probability of F ′ may
be easier to compute, giving us an upper bound for P(F).

EXAMPLE 9 (EXAMPLE 7 CONT.). F ′ = X ′Y ∨X ′′Z is a dissoci-
ation of F =XY ∨XZ, and its probability is P(F ′)= 1−(1−pq)(1−
pr) = pq+ pr− p2qr. Here, only the variable X dissociates into
X ′,X ′′. It is easy to see that P(F) ≤ P(F ′). Moreover, if p = 0
or 1, then P(F) = P(F ′). The condition that no two dissociations
of the same variable occur in a common prime implicant is neces-
sary: for example, F ′ = X ′X ′′ is a dissociation of F = X. However
P(F) = p, P(F ′) = p2, and we do not have P(F)≤ P(F ′).

3. DISSOCIATION OF QUERIES
This section introduces our main technique for approximate query
processing. After defining dissociations (Section 3.1), we show
that some of them are in 1-to-1 correspondence with query plans,
then derive our first algorithm for approximate query processing
(Section 3.2). Finally, we describe two extensions in the presence
of deterministic relations or functional dependencies (Section 3.3).

3.1 Query dissociation
DEFINITION 10 (DISSOCIATION). Given a Boolean query
q :−R1(x1), . . . ,Rm(xm) and a probabilistic database D. Let
∆ = (y1, . . . ,ym) be a collection of sets of variables with
yi ⊆ Var(q)− Var(gi) for every relation Ri. The dissociation
defined by ∆ has then two components:

(1) the dissociated query: q∆ :−Ry1
1 (x1,y1), . . . ,R

ym
m (xm,ym),

where each Ryi
i (xi,yi) is a new relation of arity |xi|+ |yi|.

(2) the dissociated database instance D∆ consisting of the tables
over the vocabulary σ∆ obtained by evaluating (determinis-
tically) the following queries over the instance D:

Ryi
i (xi,yi) :−Ri(xi),ADomyi1(yi1), . . . ,ADomyik (yik)

where yi = (yi1, . . . ,yiki). For each tuple t ′ ∈ Ryi
i , its proba-

bility is defined as p′(t ′) = p(πxi(t
′)), i.e. the probability of t

in the database D.

Thus, a dissociation acts on both the query expression and the
database instance: It adds some variables yi to each relational sym-
bol Ri of the query expression, and it computes a new instance for
each relation Ryi

i by copying every record t ∈ Ri once for every tu-
ple in the cartesian product ADomyi1 ×·· ·×ADomyik . When yi = /0
then we abbreviate R /0

i with Ri. We give a simple example:

EXAMPLE 11 (EXAMPLE 7 CONT.). Consider q :−R(x),S(x,y).
Then ∆ = ({y}, /0) defines the following dissociation: q∆ =
Ry(x,y),S(x,y), and the new relation Ry contains the tuples
Ry(1,4),Ry(1,5),Ry(2,4),Ry(2,5). Notice that the lineage of the
dissociated query q∆ is Fq∆,D∆ = Ry(1,4),S(1,4)∨Ry(1,5),S(1,5)
and is the same (up to variable renaming) as the dissociation of the
lineage of query q: F ′ = X ′Y ∨X ′′Z.
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THEOREM 12 (UPPER QUERY BOUNDS). For every dissociation
∆ of q: P(q)≤ P(q∆).

PROOF. Theorem 12 follows immediately from Theorem 8 by
noting that the lineage Fq∆,D∆ is a dissociation of the lineage Fq,D

through the substitution θ : D∆ → D defined as follows: for every
tuple t ′ ∈ Ryi

i , θ(t ′) = πxi(t
′).

DEFINITION 13 (SAFE DISSOCIATION). A dissociation ∆ of a
query q is called safe if the dissociated query q∆ is safe.

By Theorem 2, a dissociation is safe (i.e. its probability can be
evaluated in PTIME) iff q∆ is hierarchical. Hence, amongst all
dissociations, we are interested in those that are easy to evaluate
and use them as a technique to approximate the probabilities of
queries that are hard to compute. The idea is simple: Find a safe
dissociation ∆, compute P

(
q∆
)
, and thereby obtain an upper bound

on P(q). In fact, we will consider all safe dissociations and take
the minimum of their probabilities, since this gives an even better
upper bound on P(q) than that given by a single dissociation. We
call this quantity the propagation score3 of the query q.

DEFINITION 14 (PROPAGATION). The propagation score ρ(q)
for a query q is the minimum score of all safe dissociations:
ρ(q) = min∆P(q∆) with ∆ ranging over all safe dissociations.

The difficulty in computing ρ(q) is the number of dissociations
that is large even for relatively small queries: If q has k existential
variables and m atoms, then q has 2|K| possible dissociations with
K = ∑

m
i=1
(
k−|Var(ai)|

)
forming a partial order in the shape of a

power set lattice (see Fig.1a). Therefore, our next step is to prune
the space of dissociations and to examine only the minimum num-
ber necessary. We start by defining a partial order on dissociations:

DEFINITION 15 (PARTIAL DISSOCIATION ORDER). We define
the partial order on the dissociations of a query as:

∆� ∆
′ ⇔ ∀i : yi ⊆ y′i

Whenever ∆� ∆′, then q∆′ ,D∆′ is a dissociation of q∆,D∆ (given
by ∆′′ = ∆′−∆). Therefore, we obtain immediately:

COROLLARY 16 (PARTIAL DISSOCIATION ORDER). If ∆ � ∆′

then P(q∆)≤ P(q∆′).

EXAMPLE 17 (PARTIAL DISSOCIATION ORDER). Consider the
query q :−R(x),S(x),T (x,y),U(y). It is unsafe and allows 23 = 8
dissociations which are shown in Fig.1a with the help of an “aug-
mented incidence matrix”: each row represents one relation and
each column one variable: An empty circle (◦) indicates that a
relation contains a variable; a full circle (•) indicates that a rela-
tion is dissociated on a variable (the reason for using two separate
symbols becomes clear when we later include domain knowledge).
Among those 8 dissociations, 5 are safe, shaded in green, and have
the hierarchy among variables highlighted. Furthermore, 2 of the 5
safe dissociations are minimal: q∆3 :−R(x),S(x),T (x,y),Ux(x,y),
and q∆4 :−Ry(x,y),Sy(x,y),T (x,y),U(y) . To illustrate that these
dissociations are upper bounds, consider a database with R = T =
U = {1,2}, S = {(1,1),(1,2),(2,2)}, and the probability of all tu-
ples = 1

2 . Then q has probability 83
29 ≈ 0.161, while q∆3 has prob-

ability 169
210 ≈ 0.165, and q∆4 has probability 353

211 ≈ 0.172, both of
which are upper bounds. The propagation score is the minimum
score of all minimal safe dissociations and thus ≈ 0.165. �
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Figure 1: Example 17 (a): Partial dissociation order for q :−R(x),S(x),
T (x,y),U(y). Safe dissociations are green and have the hierarchies be-
tween variables shown (3 to 7), minimal safe dissociations are dark
green and double-lined (3 and 4). (b): All 5 query plans for q and
their correspondence to safe dissociations (3 to 7).

In general, the set of dissociations forms a lattice, with the
smallest element ∆⊥ = ( /0, . . . , /0) (q∆⊥ = q) and the largest element
∆>=(Var(q)−Var(a1), . . . ,Var(q)−Var(am)) (q∆> is safe, since
every atom contains all variables). As we move up in the lattice the
probability increases, but the safe/unsafe status may toggle arbitrar-
ily from safe to unsafe and back. For example q :−R(x),S(x),T (y)
is safe, its dissociation q′ :−R(x),Sy(x,y),T (y) is unsafe, yet the
next dissociation q′′ :−R(x),Sy(x,y),T x(x,y) is safe again.

This suggests the following naive algorithm for computing ρ(q):
Enumerate all dissociations ∆1,∆2, . . . by traversing the lattice
breadth-first, bottom up (i.e. whenever ∆i ≺ ∆ j then i < j). For
each dissociation ∆i, check if q∆i is safe. If so, then first update
ρ ← min(ρ,P(q∆i)), then remove from the list all dissociations
∆ j � ∆i. However, this algorithm is inefficient for practical pur-
poses for two reasons: (i) we need to iterate over many dissocia-
tions in order to discover those that are safe; and (ii) computing
P(q∆i) requires computing a new database instance D∆i for each
safe dissociation ∆i. We show in the next section how to avoid
both sources of inefficiency by exploiting the lattice structure and
by iterating over query plans instead of safe dissociations.

3.2 Dissociations and Plans
We prove here that the safe dissociations q∆ are in 1-to-1 corre-
spondence with query plans of the original query q. This allows
us to (i) efficiently find safe dissociations (by iterating over query
plans instead of all dissociations), and to (ii) compute P(q∆) with-
out having to materialize the dissociated database D∆.

We next describe the 1-to-1 mapping. Consider a safe dissocia-
tion q∆ and denote its corresponding unique safe plan P∆. This plan
uses dissociated relations, hence each relation Ryi

i (xi,yi) has extra-
neous variables yi. Drop all variables yi from the relations and all
operators using them: This transforms P∆ into a regular, generally
unsafe plan P for q. For a trivial example, the plan corresponding
to the top dissociation ∆> of a query q is π−Var(q)(1

[
P1, . . . ,Pk

]
):

It performs all joins first, followed by all projections.

3We chose the name “propagation” for our method because of similarities with effi-
cient belief propagation algorithms in graphical models. See [21] for a discussion on
how query dissociation generalizes relevance propagation from graphs to hypergraphs,
and [19] for a recent approach for speeding up belief propagation even further.
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Conversely, consider any plan P for q. We define its corre-
sponding safe dissociation ∆P as follows. For each join opera-
tion 1p [P1, . . . ,Pk

]
, let its join variables JVar be the union of

the head variables of all subplans: JVar =
⋃

j HVar(Pj). For ev-
ery relation Ri occurring in Pj, add the missing variables JVar−
HVar(Pj) to yi. For example, consider 1p [R(x),T (x,y),U(y)

]

(this is the lower join in query plan 5 of Fig. 1b). Here, JVar =
{x,y}, and the corresponding safe dissociation of this subplan is
q∆(x,y) :−Ry(x,y),T (x,y),Ux(x,y). Note that while there is a one-
to-one mapping between safe dissociations and query plans, unsafe
dissociations do not correspond to plans.

THEOREM 18 (SAFE DISSOCIATION). Let q be a conjunctive
query without self-joins. (1) The mappings ∆ 7→ P∆ and P 7→ ∆P

are inverses of each other. (2) For every safe dissociation ∆,
P(q∆) = score(P∆).

COROLLARY 19 (UPPER BOUNDS). Let P be any plan for a
Boolean query q. Then P(q)≤ score(P).

The proof follows immediately from P(q) ≤ P(q∆P
) (Theo-

rem 12) and P(q∆P
) = score(P) (Theorem 18). In other words, any

plan for q computes a probability score that is guaranteed to be an
upper bound on the correct probability P(q).

Theorem 18 suggests the following improved algorithm for com-
puting the propagation score ρ(q) of a query: Iterate over all
plans P, compute their scores, and retain the minimum score
minP[score(P)]. Each plan P is evaluated directly on the original
probabilistic database, and there no need to materialize the disso-
ciated database instance. However, this approach is still inefficient
because it computes several plans that correspond to non-minimal
dissociations. For example, in Fig. 1 plans 5, 6, 7 correspond to
non-minimal dissociations, since plan 3 is safe and below them.

Enumerating minimal safe dissociations. Call a plan P mini-
mal if ∆P is minimal in the set of safe dissociations. For example,
in Example 17, the minimal plans are 3 and 4. The propagation
score is thus the minimum of the scores of the two minimal plans:
ρ(q) = mini∈{3,4}

[
score

(
P(i))]. Our improved algorithm will iter-

ate only over minimal plans, by relying on a connection between
plans and sets of variables that disconnect a query: A cut-set is a
set of existential variables x∈ EVar(q) s.t. q−x is disconnected. A
min-cut-set (for minimal cut-set) is a cut-set for which no strict sub-
set is a cut-set. We denote MinCuts(q) the set of all min-cut-sets.
Note that q is disconnected iff MinCuts(q) = { /0}.

The connection between MinCuts(q) and query plans is given by
two observations: (1) Let P be any plan for q. If q is connected, then
the last operator in P is a projection, i.e. P = π−x(1

[
P1, . . . ,Pk

]
),

and the projection variables x are the join variables x = JVar be-
cause q is Boolean so the plan must project away all variables. We
claim that x is a cut-set for q and that q−x has k connected compo-
nents corresponding to P1, . . . ,Pk. Indeed, if Pi,Pj share any com-
mon variable y, then they must join on y, hence y ∈ JVar. Thus,
cut-sets are in 1-to-1 correspondence with the top-most projection
operator of a plan. (2) Now suppose that P corresponds to a safe
dissociation ∆P, and let P′ = π−x(1

[
P′1, . . . ,P

′
k
]
) be its unique safe

plan. Then x = SVar(q∆P
); i.e. the top-most project operator re-

moves all separator variables.4 Furthermore, if ∆ � ∆P is a larger
dissociation, then SVar(q∆) ⊇ SVar(q∆P

) (because any separator
variable of a query continues to be a separator variable in any dis-
sociation of that query). Thus, minimal plans correspond to min-
cut-sets; in other words, MinCuts(q) is in 1-to-1 correspondence
with the top-most projection operator of minimal plans.
4This follows from the recursive definition of the unique safe plan of a query in
Lemma 3: the top most projection consists precisely of its separator variables.

Recursive algorithm: MP (EnumerateMinimalPlans)
Input: Query q(x) :−R1(x1), . . . ,Rm(xm)
Output: Set of all minimal query plans P

1 if m = 1 then P ←{πxR1(x1)}
2 else
3 Set P ← /0
4 if q is disconnected then
5 Let q = q1, . . . ,qk be the connected components of q−HVar(q)
6 foreach qi do Let HVar(qi)← HVar(q)∩Var(qi)
7 foreach (P1, . . . ,Pk) ∈ MP(q1)×·· ·×MP(qk) do
8 P ←P ∪{1p

[
P1, . . . ,Pk

]
}

9 else
10 foreach y ∈ MinCuts(q−HVar(q)) do
11 Let q′← q with HVar(q′)← HVar(q)∪y
12 foreach P ∈ MP(q′) do P ←P ∪{π−y P}

Algorithm 1: generates all minimal query plans for a given query q.

Our discussion leads immediately to Algorithm 1 for computing
the propagation score ρ(q). It also applies to non-Boolean queries
by treating the head variables as constants, hence ignoring them
when computing connected components. The algorithm proceeds
recursively. If q is a single atom then it is safe and we return its
unique safe plan. If the query has more than one atom, then we con-
sider two cases, when q−HVar(q) is disconnected or connected. In
the first case, every minimal plan is a join, where the subplans are
minimal plans of the connected components. In the second case,
a minimal plan results from a projection over min-cut-sets. Notice
that recursive calls of the algorithm will alternate between these
two cases, until they reach a single atom.

THEOREM 20 (ALGORITHM 1). Algorithm 1 computes the set of
all minimal query plans.

Conservativity. Some probabilistic database systems first check
if a query q is safe, and in that case compute the exact probability
using the safe plan, otherwise use some approximation technique.
We show that Algorithm 1 is conservative, in the sense that, if q is
safe, then ρ(q) = P(q). Indeed, in that case MP(q) returns a single
plan, namely the safe P for q, because the empty dissociation, ∆⊥=
( /0, . . . , /0), is safe, and it is the bottom of the dissociation lattice,
making it the unique minimal safe dissociation.

Score Quality. We show here that the approximation of P(q)
by ρ(q) becomes tighter as the input probabilities in D decrease.
Thus, the smaller the probabilities in the database, the closer does
the ranking based on the propagation score approximate the ranking
by the actual probabilities.

PROPOSITION 21 (SMALL PROBABILITIES). Given a query q
and database D. Consider the operation of scaling down the proba-
bilities of all tuples in D with a factor f < 1. Then the relative error
of approximation of P(q) by the propagation score ρ(q) decreases
as f goes to 0: lim f→0

ρ(q)−P(q)
P(q) → 0.

Number of Dissociations. While the number of minimal safe
dissociations is exponential in the size of the query, recall that it is
independent of the size of the database. Figure 2 gives an overview
of the number of minimal query plans, total query plans, and all
dissociations for k-star and k-chain queries (which are later used
in Section 5). Later Section 4 gives optimizations that allow us to
evaluate a large number of plans efficiently.

3.3 Minimal plans with schema knowledge
Next, we show how knowledge of deterministic relations (i.e. all
tuples have probability = 1), and functional dependencies can re-
duce the number of plans needed to calculate the propagation score.
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k-star query k-chain query
k #MP #P #∆ k #MP #P #∆

1 1 1 1 2 1 1 1
2 2 3 4 3 2 3 4
3 6 13 64 4 5 11 64
4 24 75 4096 5 14 45 4096
5 120 541 > 106 6 42 197 > 106

6 720 4683 > 109 7 132 903 > 109

7 5040 47293 > 1012 8 429 4279 > 1012

seq k! A000670 2k(k−1) seq A000108 A001003 2(k+1)k

Figure 2: Number of minimal plans, total plans, and total dissociations
for star and chain queries (A are OEIS sequence numbers [37]).

3.3.1 Deterministic relations (DRs)
Notice that we can treat deterministic relations (DRs) just like
probabilistic relations, and Corollary 19 with P(q)≤ score(P) still
holds for any plan P. Just as before, our goal is to find a mini-
mum number of plans that compute the minimal score of all plans:
ρ(q) = minPscore(P). It is known that an unsafe query q can be-
come safe (i.e., P(q) can be calculated in PTIME with one single
plan) if we consider DRs. Thus, in particular, we would still like
an improved algorithm that returns one single plan if a query with
DRs is safe. The following lemma will help us achieve this goal:

LEMMA 22 (DISSOCIATION AND DRS). Dissociating a deter-
ministic relation does not change the probability.

PROOF. Lemma 22 follows immediately from Theorem 8 (2)
and noting that dissociating tuples in DRs corresponds exactly to
dissociating variables X with p(Xi) = 1.

We thus define a new probabilistic dissociation preorder �p by:

∆�p
∆
′⇔∀i,Ri probabilistic : yi ⊆ y′i

In other words, ∆�p ∆′ still implies P(q∆)≤ P(q∆′), but �p is de-
fined on probabilistic relations only. Notice, that for queries with-
out DRs, the relations �p and � coincide. However, for queries
with DRs, �p is a preorder, not an order. Therefore, there exist
distinct dissociations ∆, ∆′ that are equivalent under �p (written as
∆≡p ∆′), and thus have the same probability: P(q∆) = P(q∆′). As
a consequence, using �p instead of �, allows us to further reduce
the number of minimal safe dissociations.

EXAMPLE 23 (DRS). Consider q :−R(x),S(x,y),T d(y) where a
d-exponent indicates a DR. This query is known to be safe. We
thus expect our definition of ρ(q) to find that ρ(q) = P(q). Ig-
nore that T d is deterministic, then � has two minimal plans:
q∆1 :−Ry(x,y),S(x,y),T d(y), and q∆2 :−R(x),S(x,y),T dx(x,y).
Since ∆2 dissociates only T d , we now know from Lemma 22 that
P(q) = P

(
q∆2
)
. Thus, by using � as before, we still get the cor-

rect answer. However, evaluating the plan P∆1 is always unneces-
sary since ∆2 �p ∆1. In contrast, without information about DRs,
∆2 6�p ∆1, and we would thus have to evaluate both plans.

Figure 3 illustrates this with augmented incidence matrices: dis-
sociated variables in DRs are now marked with empty circles (◦) in-
stead of full circles (•), and the preorder �p is determined entirely
by full circles (representing dissociated variables in probabilistic
relations). However, as before, the correspondence to plans (as im-
plied by the hierarchy between all variables) is still determined by
empty and full circles. Figure 3b shows that ρ(q) = P

(
q∆2
)
= P(q)

since ∆0 ≡p ∆2 �p ∆1 ≡ ∆3. Thus, the query is safe, and it suffices
to evaluate only P∆2 . Notice that q is not hierarchical, but still safe
since it is in an equivalence class with a query that is hierarchical:
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(c) Rd and T d

Figure 3: Example 23: The presence of DRs Rd and T d in (b) and (c)
changes the original partial dissociation order for q :−R(x),S(x,y),T (y)
in (a): Several dissociations now have the same probability (shown with
shaded areas instead of arrows). Our modified algorithm now returns,
for each minimal safe equivalence class, the query plan for the top most
dissociation (shown in dark green and double-lined).

∆0 ≡p ∆2. Figure 3c shows that, with Rd and T d being determin-
istic, all three possible query plans (corresponding to ∆1, ∆2, and
∆3) form a “minimal equivalence class” in �p with ∆0, and thus
give the exact probability. We, therefore, want to modify our algo-
rithm to return just one plan from each “minimal safe equivalence
class.” Ideally, we prefer the plan corresponding to ∆3 (or more
generally, the top plan in � for each minimum equivalence class)
since P∆3 least constrains the join order between tables.

We now explain two simple modifications to Algorithm 1 that
achieve exactly our desired optimizations described above:

(1) Denote with MinPCuts(q) the set of minimal cut-sets that
disconnect the query into at least two connected components
with probabilistic tables. Replace MinCuts(q) in line 10
with MinPCuts(q).

(2) Denote with mp the number of probabilistic relations in a
query. Replace the stopping condition in line 1 with: if mp ≤
1 then P←{πx 1

p[R1(x1), . . . ,Rm(xm)
]
}. In other words,

if a query has maximal one probabilistic relation, than join
all relations followed by projecting on the head variables.

THEOREM 24 (ALGORITHM 1 WITH DRS). Algorithm 1 with
above 2 modifications returns a minimum number of plans to cal-
culate ρ(q) given schema knowledge about DRs.

For example, for q :−R(x),S(x,y),T d(y), MinCuts(q) =
{{x},{y}}, while MinPCuts(q) = {{x}}. Therefore, the modified
algorithm returns P∆2 as single plan. For q :−Rd(x),S(x,y),T d(y),
the stopping condition is reached (also, MinPCuts(q) = { /0}) and
the algorithm returns P∆3 as single plan (see Fig.3c).

3.3.2 Functional dependencies (FDs)
Knowledge of functional dependencies (FDs), such as keys, can
also restrict the number of necessary minimal plans. A well known
example is the query q :−R(x),S(x,y),T (y) from Example 23; it
becomes safe if we know that S satisfies the FD Γ : x→ y and has
a unique safe plan that corresponds to dissociation ∆2. In other
words, we would like our modified algorithm to take Γ into account
and to not return the plan corresponding to dissociation ∆1.

Let Γ be the set of FDs on Var(q) consisting of the union of FDs
on every atom Ri in q. As usual, denote x+i the closure of a set of
attributes xi, and denote ∆Γ = (y1, . . . ,ym) the dissociation defined
as follows: for every atom Ri(xi) in q, yi = x+i \xi. Then we show:

LEMMA 25 (DISSOCIATION AND FDS). Dissociating a table Ri
on any variable y ∈ x+i does not change the probability.
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This lemma is similar to Lemma 22. We can thus further refine our
probabilistic dissociation preorder �p′ by:

∆�p′
∆⇔∀i,Ri probabilistic : yi \x+i ⊆ y′i \x+i

As a consequence, using �p′ instead of �p, allows us to further
reduce the number of minimal safe equivalence classes. We next
state a result by [39] in our notation:

PROPOSITION 26 (SAFETY AND FDS [39, PROP. IV.5]). A
query q is safe iff q∆Γ is hierarchical.

This justifies our third modification to Algorithm 1 for comput-
ing ρ(q) of a query q over a database that satisfies Γ : First compute
∆Γ , then run q∆Γ on our previously modified Algorithm 1.

THEOREM 27 (ALGORITHM 1 WITH FDS). Algorithm 1 with
above 3 modifications returns a minimum number of plans to cal-
culate ρ(q) given schema knowledge about DRs and FDs.

It is easy to see that our modified algorithm returns one single
plan iff the query is safe, taking into account its structure, DRs and
FDs. It is thus a strict generalization of all known safe self-join-free
conjunctive queries [7, 39]. In particular, we can reformulate the
known safe query dichotomy [7] in our notation very succinctly:

COROLLARY 28 (DICHOTOMY). P(q) can be calculated in
PTIME iff there exists a dissociation ∆ of q that is (i) hierarchi-
cal, and (ii) in an equivalence class with q under �p′.

To see what the corollary says, assume first that there are no FDs:
Then q is in PTIME iff there exists a dissociation ∆ of the DRs only,
such that q∆ is hierarchical. If there are FDs, then we first compute
the full dissociation ∆Γ (called “full chase” in [39]), then apply the
same criterion to q∆Γ .

4. MULTI-QUERY OPTIMIZATIONS
So far, Algorithm 1 enumerates all minimal query plans. We then
take the minimum score of those plans in order to calculate the
propagation score ρ(q). In this section, we develop three optimiza-
tions that can considerably reduce the necessary calculations for
evaluating all minimal query plans. Note that these three optimiza-
tions and the two optimizations from the previous section are or-
thogonal and can be arbitrarily combined in the obvious way. We
use the following example to illustrate the first two optimizations.

EXAMPLE 29 (OPTIMIZATIONS). Consider q :− R(x,z),S(y,u),
T (z),U(u),M(x,y,z,u). Our default is to evaluate all 6 minimal
plans returned by Algorithm 1, then take the minimum score (shown
in Fig. 4a). Figure 4b and Fig. 4c illustrate the optimized evalua-
tions after applying Opt. 1, or Opt. 1 and Opt. 2, respectively. �

4.1 Opt. 1: One single query plan
Our first optimization creates one single query plan by pushing the
min-operator down into the leaves. It thus avoids calculations when
it is clear that other calculations must have lower bounds. The idea
is simple: Instead of creating one query subplan for each top set
y∈ MinCuts(q) in line 12 of Algorithm 1, the adapted Algorithm 2
takes the minimum score over those top sets, for each tuple of the
head variables in line 11. It thus creates one single query plan.

4.2 Opt. 2: Re-using common subplans
Our second optimization calculates only once, then re-uses
common subplans shared between the minimal plans. Thus,
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(a)  Result  from  Algorithm  1:  six  minimal  query  plans	


(b)  Result  from  Algorithm  4:  one  single  query  plan	


(c)  Result  from  Algorithm  5:  re-­‐‑using  common  subplans	
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Figure 4: Example 29 before and after applying optimizations 1 and 2.

Recursive algorithm: SP (SinglePlan)
Input: Query q(x) :−R1(x1), . . . ,Rm(xm)
Output: Single query plan P

1 if m = 1 then P← π p
x Ri(xi)

2 else
3 if q is disconnected then
4 Let q = q1, . . . ,qk be the components connected by EVar(q)
5 Let HVar(qi)← HVar(q)∩Var(qi)

6 P←1p
[
SP(q1), . . . ,SP(qk)

]

7 else
8 Let MinCuts(q) = {y1, . . . ,y j}
9 Let q′i← qi with HVar(q′i)← HVar(q)∪yi

10 if j=1 then P← π p
−y1

SP(q′1)

11 else P←min
[
π p
−y1

SP(q′1), . . . ,π
p
−y j

SP(q′j)
]

Algorithm 2: Optimization 1 recursively pushes the min operator into
the leaves and generates one single query plan.

whereas our first optimization reduces computation by combin-
ing plans at their roots, the second optimization stores and re-
uses common results in the branches. The adapted Algorithm 3
works as follows: It first traverses the whole single query plan
(FindingCommonSubplans) and remembers each subplan by the
atoms used and its head variables in a HashSet HS (line 14). If it
sees a subplan twice (line 13), it creates a new view for this sub-
plan, mapping the subplan to a new view definition. The actual
plan (ViewReusingPlan) then uses these views whenever possi-
ble (line 18). The order in which the views are created (line 5)
assures that the algorithm also discovers and exploits nested com-
mon subexpressions. Figure 4c illustrates for Example 29, that both
the main plan and the view V3 re-use views V1 and V2.

4.3 Opt. 3: Deterministic semi-join reduction
The most expensive operations in probabilistic query plans are the
group-bys for the probabilistic project operations. These are often
applied early in the plans to tuples which are later pruned and do not

635



Algorithm: UsingCommonSubplans
Input: Query q(x) :−R1(x1), . . . ,Rm(xm)
Output: Ordered set of view definitions V , final query plan P

1 HS← /0 // HashSet of all subplans
2 HM←( /0, /0) // HashMap from subplans to unique view names
3 V ← /0 // Set of view definitions
4 FS(q)
5 foreach qi ∈ HM.keys in increasing size of HVar(qi) and Var(qi) do
6 V ← V ∪{HM.val = ViewReusingPlan(qi)}
7 P = RP(q)

Recursive function: FS (FindingCommonSubplans)
Input: Query q(x) :−R1(x1), . . . ,Rm(xm)

8 if q is disconnected then
9 Let q = q1, . . . ,qk be the components connected by EVar(q)

10 foreach qi do FS(qi(xi))

11 else
12 if (m = 1∧x = xi)∨HM(q) 6= /0 then return
13 if q ∈ HS∧HM(q) = /0 then HM(q)← new view name
14 HS← HS∪{q}
15 foreach y ∈ MinCuts(q) do
16 Let q′← q with HVar(q′)← HVar(q)∪y
17 FS(q′)

Recursive function: RP (ViewReusingPlan)
Input: Query q(x) :−R1(x1), . . . ,Rm(xm)
Output: Query plan P that reuses views from HashMap HM

18 if HM(q) 6= /0 then P← HM(q)
19 else
20 Insert here lines 1-11 from Algorithm 2, replacing SP with RP

Algorithm 3: Optimizations 1 & 2 together create a query plan which
re-uses several previously defined temporary views.

contribute to the final query result. Our third optimization is to first
apply a full semi-join reduction on the input relations before start-
ing the probabilistic evaluation from these reduced input relations.
We like to draw here an important connection to [39], which intro-
duces the idea of “lazy plans” and shows orders of magnitude per-
formance improvements for safe plans by computing confidences
not after each join and projection, but rather at the very end of the
plan. We note that our semi-join reduction serves the same pur-
pose with similar performance improvements and also apply for
safe queries. The advantage of semi-join reductions, however, is
that we do not require any modifications to the query engine.

5. EXPERIMENTS
We are interested in both the efficiency (“how fast?”) and the qual-
ity (“how good?”) of ranking by dissociation as compared to exact
probabilistic inference, Monte Carlo simulation (MC), and stan-
dard deterministic query evaluation (“deterministic SQL”).

Ranking quality. We use mean average precision (MAP) to
evaluate the quality of a ranking by comparing it against the rank-
ing from exact probabilistic inference as ground truth (GT). MAP
rewards rankings that place relevant items earlier; the best possible
value is 1, and the worst possible 0. We use a variant of “Aver-

age Precision at 10” defined as AP@10 := ∑
10
k=1 P@k

10 . Here, P@k is
the precision at the kth answer, i.e., the fraction of top k answers
according to GT that are also in the top k answers returned. Aver-
aging over several experiments yields MAP [34]. We use a variant
of the analytic method proposed in [35] to calculate AP in the pres-
ence of ties. As baseline for no ranking, we assume all tuples have
the same score and are thus tied for the same position. We call this
baseline “random average precision.”

Exact probabilistic inference. Whenever possible, we calculate
GT rankings with a tool called SampleSearch [23, 47], which also
serves to evaluate the cost of exact probabilistic inference. We de-

scribe the method of transforming the lineage DNF into a format
that can be read by SampleSearch in [22].

Monte Carlo (MC). We evaluate the MC simulations for dif-
ferent numbers of samples and write MC(x) for x samples. For
example, AP for MC(10k) is the result of sampling the individual
tuple scores 10 000 times from their lineages and then evaluating
AP once over the sampled scores. The MAP scores together with
the standard deviations are then the average over several repetitions.

Ranking by lineage size. To evaluate the potential of non-
probabilistic methods for ranking answers, we also rank the answer
tuples by decreasing size of their lineages; i.e. number of terms. In-
tuitively, a larger lineage size should indicate that an answer tuple
has more “support” and should thus be more important.

Setup 1. We use the TPC-H DBGEN data generator [54] to gen-
erate a 1GB database to which we add a column P for each ta-
ble and store it in PostgreSQL 9.2 [43]. We assign to each input
tuple i a random probability pi uniformly chosen from the inter-
val [0, pimax], resulting in an expected average input probability
avg[pi] = pimax/2. By using databases with avg[pi]< 0.5, we can
avoid output probabilities close to 1 for queries with very large lin-
eages. We use the following parameterized query:

Q(a) :−S(s,a),PS(s,u),P(u,n),s≤ $1,n like $2

select distinct s nationkey from Supplier, Partsupp, Part
where s suppkey = ps suppkey and ps partkey = p partkey
and s suppkey <= $1 and p name like $2

Parameters $1 and $2 allow us to change the lineage size. Tables
Supplier, Partsupp and Part have 10k, 800k and 200k tuples, re-
spectively. There are 25 different numeric attributes for nationkey

and our goal is to efficiently rank these 25 nations. As baseline
for not ranking, we use random average precision for 25 answers,
which leads to MAP@10 ≈ 0.220. This query has two minimal
query plans and we will compare the speed-up from either evalu-
ating both individually or performing a deterministic semi-join re-
duction (Optimization 3) on the input tables.

Setup 2. We compare the run times for our three optimizations
against evaluation of all plans for k-chain queries and k-star queries
over varying database sizes (to evaluate data complexity) and vary-
ing query sizes (to evaluate query complexity):

k-chain: q(x0,xk) :−R1(x0,x1),R2(x1,x2), . . . ,Rk(xk−1,xk)

k-star: q(′a′) :−R1(
′a′,x1),R2(x2), . . . ,Rk(xk),R0(x1, . . . ,xk)

We denote the length of the query with k, the number of tuples per
table with n, and the domain size with N. We use integer values
which we uniformly draw from the range {1,2, . . .N}. Thus, the
parameter N determines the selectivity and is varied as to keep the
answer cardinality constant around 20-50 for chain queries, or the
answer probability between 0.90 and 0.95 for star queries. For the
data complexity experiments, we vary the number of tuples n per
table between 100 and 106. For the query complexity experiments,
we vary k between 2 and 8 for chain queries. For these experiments,
the optimized (and often extremely long) SQL statements are “cal-
culated” in JAVA and then sent to Microsoft SQL server 2012. To
illustrate with numbers, we have to issue 429 query plans in order
to evaluate the 8-chain query (see Fig.2). Each of these plans joins
8 tables in a different order. Optimization 1 then merges those plans
together into one truly gigantic single query plan.

5.1 Run time experiments

QUESTION 1. When and how much do our three query optimiza-
tions speed up query evaluation?
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Result 1. Combining plans (Opt. 1) and using intermediate views
(Opt. 2) almost always speeds up query times. The semi-join re-
duction (Opt. 3) slows down queries with high selectivities, but
considerably speeds up queries with small selectivities.

Figures 5a to 5d show the results on setup 2 for increasing database
sizes or query sizes. For example, Fig.5b shows the performance of
computing a 7-chain query which has 132 safe dissociations. Eval-
uating each of these queries separately takes a long time, while our
optimization techniques bring evaluation time close to determinis-
tic query evaluation. Especially on larger databases, where the run-
ning time is I/O bound, the penalty of the probabilistic inference is
only a factor of 2-3 in this example. Notice here the trade-off be-
tween optimization 1,2 and optimization 1,2,3: Optimization 3 ap-
plies a full semi-join reduction on the input relations before starting
the probabilistic plan evaluation from these reduced input relations.
This operation imposes a rather large constant overhead, both at the
query optimizer and at query execution. For larger databases (but
constant selectivity), this overhead is amortized. In practice, this
suggests that dissociation allows us a large space of optimizations
depending on the query and particular database instance that can
conservatively extend the space of optimizations performed today
in deterministic query optimizers.

Figures 5e to 5g compare the running times on setup 1 be-
tween dissociation with two minimal query plans (“Diss”), disso-
ciation with semi-join reduction (“Diss + Opt3”), exact probabilis-
tic inference (“SampleSearch”), Monte Carlo with 1000 samples
(“MC(1k)”), retrieving the lineage only (“Lineage query”), and
deterministic query evaluation without ranking (“Standard SQL”).
We fixed $2 ∈ {’%red%green%’, ’%red%’, ’%’} and varied $1 ∈
{500,1000, . . .10k}. Figure 5h combines all three previous plots
and shows the times as function of the maximum lineage size (i.e.
the size of the lineage for the tuple with the maximum lineage)
of a query. We see here again that the semi-join reduction speeds
up evaluation considerably for small lineage sizes (Fig. 5e shows
speedups of up to 36). For large lineages, however, the semi-join
reduction is an unnecessary overhead, as most tuples are participat-
ing in the join anyway (Fig.5f shows overhead of up to 2).

QUESTION 2. How does dissociation compare against other
probabilistic methods and standard query evaluation?

Result 2. The best evaluation strategy for dissociation takes only
a small overhead over standard SQL evaluation and is consider-
ably faster than other probabilistic methods for large lineages.

Figures 5d to 5h show that SampleSearch does not scale to larger
lineages as the performance of exact probabilistic inference de-
pends on the tree-width of the Boolean lineage formula, which
generally increases with the size of the data. In contrast, dissoci-
ation is independent of the treewidth. For example, SampleSearch
needed 780 sec for calculating the ground truth for a query with
max[lin] = 5.9k for which dissociation took 3.0 sec, and MC(1k)
took 42 sec for a query with max[lin] = 4.2k for which dissociation
took 2.4 sec. Dissociation takes only 10.5 sec for our largest query
$2 = ’%’ and $1 = 10k with max[lin] = 35k. Retrieving the lineage
for that query alone takes 5.8 sec, which implies that any proba-
bilistic method that evaluates the probabilities outside of the data-
base engine needs to issue this query to retrieve the DNF for each
answer and would thus have to evaluate lineages of sizes around
35k in only 4.7 (= 10.5 - 5.8) sec to be faster than dissociation.5

5The time needed for the lineage query thus serves as minimum benchmark for any
probabilistic approximation. The reported times for SampleSearch and MC are the
sum of time for retrieving the lineage plus the actual calculations, without the time for
reading and writing the input and output files for SampleSearch.

5.2 Ranking experiments
For the following experiments, we are limited to those query pa-
rameters $1 and $2 for which we can get the ground truth (and
results from MC) in acceptable time. We systematically vary pimax
between 0.1 and 1 (and thus avg[pi] between 0.05 and 0.5) and
evaluate the rankings several times over randomly assigned input
tuple probabilities. We only keep data points (i.e. results of indi-
vidual ranking experiments) for which the output probabilities are
not too close to 1 to be meaningful (max[pa]< 0.999999).

QUESTION 3. How does ranking quality compare for our three
ranking methods and which are the most important factors that de-
termine the quality for each method?

Result 3. Dissociation performs better than MC which performs
better than ranking by lineage size.

Figure 5i shows averaged results of our probabilistic methods for
$2 = ’%red%green%’.6 Shaded areas indicate standard deviations
and the x-axis shows varying numbers of MC samples. We only
used those data points for which avg[pa] of the top 10 ranked tuples
is between 0.1 and 0.9 according to ground truth (≈ 6k data points
for dissociation and lineage, ≈ 60k data points for MC, as we re-
peated each MC simulation 10 times), as this is the best regime for
MC, according to Result 4. We also evaluated quality for dissocia-
tion and ranking by lineage for more queries by choosing parameter
values for $2 from a set of 28 strings, such as ’%r%g%r%a%n%d%’

and ’%re%re%’. The average MAP over all 28 choices for parame-
ters $2 is 0.997 for ranking by dissociation and 0.520 for ranking by
lineage size (≈ 100k data points). Most of those queries have too
large of a lineage to evaluate MC. Note that ranking by lineage al-
ways returns the same ranking for given parameters $1 and $2, but
the GT ranking would change with different input probabilities.

Result 4. Ranking quality of MC increases with the number of
samples and decreases when the average probability of the an-
swer tuples avg[pa] is close to 0 or 1.

Figure 5j shows the AP as a function of avg[pa] of the top 10
ranked tuples according to ground truth by logarithmic scaling of
the x-axis (each point in the plot averages AP over ≈ 450 exper-
iments for dissociation and lineage and over ≈ 4.5k experiments
for MC). We see that MC performs increasingly poor for ranking
answer tuples with probabilities close to 0 or 1 and even approach
the quality of random ranking (MAP@10 = 0.22). This is so be-
cause, for these parameters, the probabilities of the top 10 answers
are very close, and MC needs many iterations to distinguish them.
Therefore, MC performs increasingly poorly for increasing size of
lineage but fixed average input probability avg[pi]≈ 0.5, as the av-
erage answer probabilities avg[pa] will be close to 1. In order not
to “bias against our competitor,” we compared against MC in its
best regime with 0.1 < avg[pa]< 0.9 in Fig.5i.

Result 5. Ranking by lineage size has good quality only when all
input tuples have the same probability.

Figure 5k shows that ranking by lineage is good only when all
tuples in the database have the same probability (labeled by pi =
const as compared to avg[pi] = const). This is a consequence of the
output probabilities depending mostly on the size of the lineages if
all probabilities are equal. Dependence on other parameters, such
as overall lineage size and magnitude of input probabilities (here
shown for pi = 0.1 and pi = 0.5), seem to matter only slightly.
6Results for MC with other parameters of $2 are similar. However, the evaluation time
for the experiments becomes quickly infeasible.
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Figure 5: Timing results: (a)-(c) For increasing database sizes and constant cardinalities, our optimizations approach deterministic SQL performance.
(d) Our optimizations can even evaluate very large number of minimal plans efficiently (here shown up to 429 for an 8-chain query). (e)-(h) For the
TPC-H query, the best evaluation for dissociation is within a factor of 6 of that for deterministic query evaluation. (i)-(p) Ranking experiments on
TPC-H: Assumptions for each subfigure and conclusions that can be drawn are described in the main text in the respective result paragraph.
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Result 6. The quality of dissociation decreases with the average
number of dissociations per tuple avg[d] and with the average
input probabilities avg[pi]. Dissociation performs very well and
notably better then MC(10k) if either avg[d] or avg[pi] are small.

Each answer tuple a gets its score pa from one of two query plans
PS and PP that dissociate tuples in tables S and P, respectively. For
example, if the lineage size for tuple a is 100 and the lineage con-
tains 20 unique suppliers from table S and 50 unique parts from
table P, then PS dissociates each tuple from S into 5 tuples and PP
each tuple from P into 2 tuples, on average. Most often, PP will
then give the better bounds as it has fewer average dissociations.
Let avg[d] be the mean number of dissociations for each tuple in
the dissociated table of its respective optimal query plan, averaged
across all top 10 ranked answer tuples. For all our queries (even
those with $1 = 10k and $2 = ’%’), avg[d] stays below 1.1 as, for
each tuple, there is usually one plan that dissociates few variables.
In order to understand the impact of higher numbers of dissocia-
tions (increasing avg[d]), we also measured AP for the ranking for
each query plan individually. Hence, for each choice of random
parameters, we record two new data points – one for ranking all
answer tuples by using only PS and one for using only PP – to-
gether with the values of avg[d] in the respective table that gets
dissociated. This allows us to draw conclusions for a larger set of
parameters. Figure 5l plots MAP values as a function of avg[d] of
the top 10 ranked tuples on the horizontal axis, and various val-
ues of avg[pi] (avg[pi] = 0.05,0.10, . . . ,0.5). Each plotted point
averages over at least 10 data points (some have 10, other several
1000s). Dashed lines show a fitted parameterized curve to the data
points on avg[pi] and avg[d]. The figure also shows the standard de-
viations as shaded areas for avg[pi] = 0.5. We see that the quality
is very dependent on avg[pi], as predicted by Prop. 21.

Figure 5m maps the trade-off between dissociation and MC for
the two important parameters for the quality of dissociation (avg[d]
and avg[pi]) and the number of samples for MC. For example,
MC(1k) gives a better expected ranking than dissociation only for
the small area above the thick red curve marked MC(1k). For MC,
we used the test results from Fig.5i; i.e. assuming 0.1 < avg[pa]<
0.9 for MC. Also recall that for large lineages, having an input
probability with avg[pi] = 0.5 will often lead to answer probabil-
ities close to 1 for which ranking is not possible anymore (recall
Fig.5k). Thus, for large lineages, we need small input probabilities
to have meaningful interpretations. And for small input probabili-
ties, dissociation considerably outperforms any other method.

QUESTION 4. How much would the ranking change according to
exact probabilistic inference if we scale down all input tuples?

Result 7. If the probabilities of all input tuples are already small,
then scaling them further down does not affect the ranking much.

Here, we repeatedly evaluated the exact ranking for 7 different pa-
rameterized queries over randomly generated databases with one
query plan that has avg[d]≈ 3, for two conditions: first on a prob-
abilistic database with avg[pi] input probabilities (we defined the
resulting ranking as GT); then again on a scaled version, where all
input probabilities in the database are multiplied by the same scal-
ing factor f ∈ (0,1). We then compared the new ranking against
GT. Figure 5n shows that if all input probabilities are already small
(and dissociation already works well), then scaling has little effect
on the ranking. However, for avg[pi] = 0.5 (and thus many tuples
with pi close to 1), we have a few tuples with pi close to 1. These
tuples are very influential for the final ranking, but their relative in-
fluence decreases if scaled down even slightly. Also note that even

for avg[pi] = 0.5, scaling a database by a factor f = 0.01 instead
of f = 0.2 does not make a big difference. However, the quality
remains well above ranking by lineage size (!). This suggests that
the difference between ranking by lineage size (MAP≈ 0.529) and
the ranking on a scaled database for f → 0 (MAP ≈ 0.879) can be
attributed to the relative weights of the input tuples (we thus refer to
this as “ranking by relative input weights”). The remaining differ-
ence in quality then comes from the actual probabilities assigned
to each tuple. Using MAP≈ 0.220 as baseline for random ranking,
38% of the ranking quality can be found by the lineage size alone
vs. 85% by the lineage size plus the relative weights of input tuples.
The remaining 15% come from the actual probabilities (Fig.5o).

QUESTION 5. Does the expected ranking quality of dissociation
decrease to random ranking for increasing fractions of dissociation
(just like MC does for decreasing number of samples)?

Result 8. The expected performance of dissociation for increasing
avg[d] for a particular query is lower bounded by the quality of
ranking by relative input weights.

Here, we use a similar setup as before and now compare various
rankings against each other: SampleSearch on the original data-
base (“GT”); SampleSearch on the scaled database (“Scaled GT”);
dissociation on the scaled database (“Scaled Diss”); and ranking
by lineage size (which is unaffected by scaling). From Fig.5p, we
see that the quality of Scaled Diss w.r.t. Scaled GT→ 1 for f → 0
since dissociation works increasingly well for small avg[pi] (recall
Prop. 21). We also see that Scaled Diss w.r.t. GT decreases towards
Scaled GT w.r.t. GT for f → 0. Since dissociation can always re-
produce the ranking quality of ranking by relative input weights by
first downscaling the database (though losing information about the
actual probabilities) the expected quality of dissociation for smaller
scales does not decrease to random ranking, but rather to ranking
by relative weights. Note this result only holds for the expected
MAP; any particular ranking can still be very much off.

6. RELATED WORK
Probabilistic databases. Current approaches to query evalu-

ation on probabilistic databases can be classified into three cate-
gories: (i) incomplete approaches identify tractable cases either at
the query-level [7, 8, 17] or the data-level [38, 46, 50]; (ii) exact
approaches [2, 30, 38, 39, 49] work well on queries with simple
lineage expressions, but perform poorly on database instances with
complex lineage expressions. (iii) approximate approaches either
apply general purpose sampling methods [29, 32, 33, 44], or ap-
proximate the number of models of the Boolean lineage expres-
sion [16, 40, 45]. Our work can be seen as a generalization of
several of these techniques: Our algorithm returns the exact score
if the query is safe [7, 39] or data-safe [30].

Lifted and approximate inference. Lifted inference was in-
troduced in the AI literature as an approach to probabilistic infer-
ence that uses the first-order formula to exploit symmetries at the
grounded level [42]. This research evolved independently of that
on probabilistic databases, and the two have many analogies: A
formula is called domain liftable iff its data complexity is in poly-
nomial time [28], which is the same as a safe query in probabilistic
databases, and the FO-d-DNNF circuits described in [12] corre-
spond to the safe plans discussed in this paper. See [11] for a recent
discussion on the similarities and differences.

Representing Correlations. The most popular approach to rep-
resent correlations between tuples in a probabilistic database is
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by a Markov Logic network (MLN) which is a set of soft con-
straints [13]. Quite remarkably, all complex correlations intro-
duced by an MLN can be rewritten into a query over a tuple-
independent probabilistic database [24, 26, 31]. In combination
with such rewritings, our techniques can be also applied to MLNs
if their rewritings results in conjunctive queries without self-joins.

Dissociation. Dissociation was first introduced in the workshop
paper [20], presented as a way to generalize graph propagation
algorithms to hypergraphs. Theoretical upper and lower bounds
for dissociation of Boolean formulas, including Theorem 8, were
proven in [22]. Dissociation is related to a technique called relax-
ation for probabilistic inference in graphical models [10].

7. CONCLUSIONS AND OUTLOOK
This paper proposes to approximate probabilistic query evalua-

tion by evaluating a fixed number of query plans, each providing an
upper bound on the true probability, then taking their minimum. We
provide an algorithm that takes into account important schema in-
formation to enumerate only the minimal necessary plans among all
possible plans, and prove it to be a strict generalization of all known
results of PTIME self-join-free conjunctive queries. We describe
relational query optimization techniques that allow us to evaluate
all minimal queries in a single query and very fast: Our experi-
ments show that these optimizations bring approximate probabilis-
tic query evaluation close to standard query evaluation while pro-
viding high ranking quality. In future work, we plan to generalize
this approach to full first-order queries. We will also make slides
illustrating our algorithms available at http://LaPushDB.com.
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[53] D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic Databases. Morgan &
Claypool Publishers, 2011.

[54] TPC-H benchmark: http://www.tpc.org/tpch/.
[55] K. Zeng, S. Gao, B. Mozafari, and C. Zaniolo. The analytical bootstrap: a new

method for fast error estimation in approximate query processing. In SIGMOD,
pp. 277–288, 2014.
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