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ABSTRACT
Social advertisement is one of the fastest growing sectors in the dig-
ital advertisement landscape: ads in the form of promoted posts are
shown in the feed of users of a social networking platform, along
with normal social posts; if a user clicks on a promoted post, the
host (social network owner) is paid a fixed amount from the adver-
tiser. In this context, allocating ads to users is typically performed
by maximizing click-through-rate, i.e., the likelihood that the user
will click on the ad. However, this simple strategy fails to leverage
the fact the ads can propagate virally through the network, from
endorsing users to their followers.

In this paper, we study the problem of allocating ads to users
through the viral-marketing lenses. We show that allocation that
takes into account the propensity of ads for viral propagation can
achieve significantly better performance. However, uncontrolled vi-
rality could be undesirable for the host as it creates room for ex-
ploitation by the advertisers: hoping to tap uncontrolled virality, an
advertiser might declare a lower budget for its marketing campaign,
aiming at the same large outcome with a smaller cost.

This creates a challenging trade-off: on the one hand, the host
aims at leveraging virality and the network effect to improve ad-
vertising efficacy, while on the other hand the host wants to avoid
giving away free service due to uncontrolled virality. We formalize
this as the problem of ad allocation with minimum regret, which we
show is NP-hard and inapproximable w.r.t. any factor. However, we
devise an algorithm that provides approximation guarantees w.r.t.
the total budget of all advertisers. We develop a scalable version
of our approximation algorithm, which we extensively test on four
real-world data sets, confirming that our algorithm delivers high
quality solutions, is scalable, and significantly outperforms several
natural baselines.

1. INTRODUCTION
Advertising on social networking and microblogging platforms

is one of the fastest growing sectors in digital advertising, further
fueled by the explosion of investments in mobile ads. Social ads
are typically implemented by platforms such as Twitter, Tumblr,
and Facebook through the mechanism of promoted posts shown in
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the “timeline” (or feed) of their users. A promoted post can be a
video, an image, or simply a textual post containing an advertising
message. Similar to organic (non-promoted) posts, promoted posts
can propagate from user to user in the network by means of social
actions such as “likes”, “shares”, or “reposts”.1 Below, we blur
the distinction between these different types of action, and generi-
cally refer to them all as clicks. These actions have two important
aspects in common: (1) they can be seen as an explicit form of ac-
ceptance or endorsement of the advertising message; (2) they allow
the promoted posts to propagate, so that they might be visible to the
“friends” or “followers” of the endorsing (i.e., clicking) users. In
particular, the platform may supplement the ads with social proofs
such as “X, Y, and 3 other friends clicked on it”, which may further
increase the chance that a user will click [2, 25].

This type of advertisement usually follows a cost per engage-
ment (CPE) model. The advertiser enters into an agreement with
the platform owner, called the host: the advertiser agrees to pay
the host an amount cpe(i) for each click received by its ad i. The
clicks may come not only from the users who saw i as a promoted
ad post, but also their (transitive) followers, who saw it because of
viral propagation. The agreement also specifies a budget Bi, that is,
the advertiser ai will pay the host the total cost of all the clicks re-
ceived by i, up to a maximum of Bi. Naturally, posts from different
advertisers may be promoted by the host concurrently.

Given that promoted posts are inserted in the timeline of the
users, they compete with organic social posts and with one an-
other for a user’s attention. A large number of promoted posts (ads)
pushed to a user by the system would disrupt user experience, lead-
ing to disengagement and eventually abandonment of the platform.
To mitigate this, the host limits the number of promoted posts that
it shows to a user within a fixed time window, e.g., a maximum of
5 ads per day per user: we call this bound the user-attention bound,
u, which may be user specific [20].

A subtle point here is that ads directly promoted by the host
count against user attention bound. On the contrary, an ad i that
flows from a user u to her follower v should not count toward v’s
attention bound. In fact, v is receiving ad i from user u, whom she is
voluntarily following: as such, it cannot be considered “promoted”.

A naı̈ve ad allocation2 would match each ad with the users most
likely to click on the ad. However, the above strategy fails to lever-
age the possibility of ads propagating virally from endorsing users
to their followers. We next illustrate the gains achieved by an allo-
cation that takes viral ad propagation into account.

1
Tumblr’s CEO David Karp reported (CES 2014) that a normal post is

reposted on average 14 times, while promoted posts are on average reposted
more than 10 000 times: http://yhoo.it/1vFfIAc.
2In the rest of the paper we use the form “allocating ads to users”
as well as “allocating users to ads” interchangeably.
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Allocation A: maximizing �(u, i)

hv1, ai, hv2, ai, hv3, ai, hv4, ai, hv5, ai, hv6, ai

Pr

A
(click(v1, a)) = Pr

A
(click(v2, a)) = 0.9

Pr

A
(click(v3, a)) = 1� (1� 0.9 · 0.2)2(1� 0.9) = 0.93

Pr

A
(click(v4, a)) = Pr

A
(click(v5, a)) = 1�(1�0.93·0.5)(1�

0.9) = 0.95

Pr

A
(click(v6, a)) = 1� (1� 0.95 · 0.1)2(1� 0.9) = 0.92

Expected number of clicks = 2⇥0.9+0.93+2⇥0.95+0.92 = 5.55

Allocation B: leveraging virality
hv1, ai, hv2, ai, hv3, bi, hv4, ci, hv5, ci, hv6, di

Pr

B
(click(v1, a)) = Pr

B
(click(v2, a)) = 0.9

Pr

B
(click(v3, a)) = 1� (1� 0.9 · 0.2)2 = 0.33

Pr

B
(click(v4, a)) = Pr

B
(click(v5, a)) = 0.33 · 0.5 = 0.16

Pr

B
(click(v6, a)) = 1� (1� 0.16 · 0.1)2 = 0.03

Pr

B
(click(v3, b)) = 0.8

Pr

B
(click(v4, b)) = Pr

B
(click(v5, b)) = 0.8 · 0.5 = 0.4

Pr

B
(click(v6, b)) = 1� (1� 0.8 · 0.5 · 0.1)2 = 0.08

Pr

B
(click(v4, c)) = Pr

B
(click(v5, c)) = 0.7

Pr

B
(click(v6, c)) = 1� (1� 0.7 · 0.1)2 = 0.14

Pr

B
(click(v6, d)) = 0.6

Expected number of clicks = 2 · 0.9 + 0.33 + 2 · 0.16 + 0.03 +

0.8 + 2 · 0.4 + 0.08 + 2 · 0.7 + 0.14 + 0.6 = 6.3.

Figure 1: Illustrating viral ad propagation. For simplicity, we
round all numbers to the second decimal.

Viral ad propagation: why it matters. For our example we use
the toy social network in Fig. 1. We assume that each time a user
clicks on a promoted post, the system produces a social proof for
such engagement action, thanks to which her followers might be
influenced to click as well. In order to model the propagation of
(promoted) posts in the network, we can borrow from the rich body
of work done in diffusion of information and innovations in social
networks. In particular, the Independent Cascade (IC) model [19],
adapted to our setting, says that once a user u clicks on an ad, she
has one independent attempt to try to influence each of her neigh-
bors v. Each attempt succeeds with a probability piu,v which de-
pends on the topics of the specific ad i and the influence exerted
by u on her neighbor v. The propagation stops when no new users
get influenced. Similarly, we model the intrinsic relevance of a pro-
moted post i to a user u, as the probability �(u, i) that u will click
on ad i, based on the content of the ad and her own interest profile,
i.e., the prior probability that the user will click on a promoted post
in the absence of any social proof. Since the model is probabilistic,
we focus on the number of clicks that an ad receives in expectation.
Formal details of the propagation model, the topic model, and the
definition of expected revenue are deferred to § 3.

Consider the example in Fig. 1, where we assume peer influence
probabilities (on edges) are equal for all the four ads {a, b, c, d}.
The figure also reports �(u, i) and advertiser budgets. For each ad-
vertiser, CPE is 1 and the attention bound for every user is 1, i.e.,
no user wants more than one ad promoted to her by the host. The
expected revenue for an allocation is the same as the resulting ex-
pected number of clicks, as the CPE is 1. Below, for simplicity, we
round all numbers to the second decimal after calculating them all.

Let us consider two ways of allocating users to ads by the host.
In allocation A, the host matches each user to her top preference(s)
based on �(u, i), subject to not violating the attention bound. This
results in ad a being assigned to all six users, since it has the high-
est engagement probability for every user. No further ads may be
promoted without violating the attention bound. In allocation B,
the host recognizes viral propagation of ads and thus assigns a to
v1 and v2, b to v3, c to v4 and v5, and d to v6.

Under allocation A, clicks on a may come from all six users:
v1, v2 click on a with probability 0.9. However, v3 clicks on a w.p.
(1� (1� 0.9 · 0.2)2(1� 0.9)) = 0.93. This is obtained by com-
bining three factors: v3’s engagement probability of 0.9 with ad a,
and probability 0.9 · 0.2 with which each of v1, v2 clicks on a and
influences v3 to click on a. In a similar way one can derive the
probability of clicking on a for v4, v5, and v6 (reported in the fig-
ure). The overall expected revenue for allocation A is the sum of
all clicking probabilities: 2⇥0.9+0.93+2⇥0.95+0.92 = 5.55.

Under allocation B, the ad a is promoted to only v1 and v2
(which click on it w.p. 0.9). Every other user that clicks on a
does so solely based on social influence. Thus, v3 clicks on a w.p.
1�(1�0.9 ·0.2)2 = 0.33. Similarly one can derive the probability
of clicking on a for v4, v5, and v6 (reported in the figure). Contri-
butions to the clicks on b can only come from nodes v3, v4, v5, v6.
They click on b, respectively, w.p. 0.8, 0.8 · 0.5 = 0.4, 0.8 · 0.5 =

0.4, and 1� (1� 0.8 · 0.5 · 0.1)2 = 0.08.
Finally, it can be verified that the expected number of clicks on

ad c is 0.7 + 0.7 + (1 � (1 � 0.7 · 0.1)2), while on d is just 0.6.
The overall number of expected clicks under allocation B is 6.3.

Observations: (1) Careful allocation of users to ads that takes vi-
ral ad propagation into account can outperform an allocation that
merely focuses on immediate clicking likelihood based on the con-
tent relevance of the ad to a user’s interest profile. It is easy to con-
struct instances where the gap between the two can be arbitrarily
high by just replicating the gadget in Fig. 1.

(2) Even though allocation A ignores the effect of viral ad prop-
agation, it still benefits from the latter, as shown in the calculations.
This naturally motivates finding allocations that expressly exploit
such propagation in order to maximize the expected revenue.

In this context, we study the problem of how to strategically al-

locate users to the advertisers, leveraging social influence and the

propensity of ads to propagate. The major challenges in solving
this problem are as follows. Firstly, the host needs to strike a bal-
ance between assigning ads to users who are likely to click and
assigning them to “influential” users who are likely to boost fur-
ther propagation of the ads. Moreover, influence may well depend
on the “topic” of the ad. E.g., u may influence its neighbor v to
different extents on cameras versus health-related products. There-
fore, ads which are close in a topic space will naturally compete for
users that are influential in the same area of the topic space. Sum-
marizing, a good allocation strategy needs to take into account the
different CPEs and budgets for different advertisers, users’ atten-
tion bound and interests, and ads’ topical distributions.

An even more complex challenge is brought in by the fact that
uncontrolled virality could be undesirable for the host, as it creates
room for exploitation by the advertisers: hoping to tap uncontrolled
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virality, an advertiser might declare a lower budget for its marketing
campaign, aiming at the same large outcome with a smaller cost.
Thus, from the host perspective, it is important to make sure the
expected revenue from an advertiser is as close to the budget as
possible: both undershooting and overshooting the budget results
in a regret for the host, as illustrated in the following example.

EXAMPLE 1. Consider again our example in Fig. 1. Rounding
to the first decimal, allocation A leads to an overall regret of |4 �
5.6| + |2 � 0| + |2 � 0| + |1 � 0| = 6.6: the expected revenue
exceeds the budget for advertiser a by 1.6 and falls short of other
advertiser budgets by 2, 2, 1 respectively. Similarly, for allocation
B, the regret is |4�2.5|+|2�1.7|+|2�1.5|+|1�0.6| = 2.7.

The host knows it will not be paid beyond the budget of each ad-
vertiser, so that any excess above the budget is essentially “free ser-
vice” given away by the host, which causes regret, and any shortfall
w.r.t. the budget is a lost revenue opportunity which causes regret
as well. This creates a challenging trade-off: on the one hand, the
host aims at leveraging virality and the network effect to improve
advertising efficacy, while on the other hand the host wants to avoid
giving away free service due to uncontrolled virality.
Contributions and roadmap. In this paper we make the following
major contributions:
• We propose a novel problem domain of allocating users to ad-

vertisers for promoting advertisement posts, taking advantage
of network effect, while paying attention to important practi-
cal factors like relevance of ad, effect of social proof, user’s
attention bound, and limited advertiser budgets (§ 3).

• We formally define the problem of minimizing regret in allo-
cating users to ads (§ 3), and show that it is NP-hard and is
NP-hard to approximate within any factor (§ 4).

• We develop a simple greedy algorithm and establish an upper
bound on the regret it achieves as a function of advertisers’
total budget (§ 4.1).

• We then devise a scalable instantiation of the greedy algorithm
by leveraging the notion of random reverse-reachable sets [5,
24] (§ 5).

• Our extensive experimentation on four real datasets confirms
that our algorithm is scalable and it delivers high quality solu-
tions, significantly outperforming natural baselines (§ 6).

To the best of our knowledge, regret minimization in the context

of promoting multiple ads in a social network, subject to budget

and attention bounds has not been studied before. Related work is
discussed in § 2, while § 7 concludes the paper discussing future
work. Some of the proofs, omitted due to lack of space, can be
found in an extended version of the paper [1].

2. RELATED WORK
Substantial work has been done on viral marketing, which

mainly focuses on a key algorithmic problem – influence maxi-
mization [7, 17, 19]. Kempe et al. [19] formulated influence max-
imization as a discrete optimization problem: given a social graph
and a number k, find a set S of k nodes, such that by activating
them one maximizes the expected spread of influence �(S) un-
der a certain propagation model, e.g., the Independent Cascade
(IC) model. Influence maximization is NP-hard, but the function
�(S) is monotone3 and submodular4 [19]. Exploiting these proper-
ties, the simple greedy algorithm that at each step extends the seed
3�(S)  �(T ) whenever S ✓ T .
4�(S [ {w})� �(S) � �(T [ {w})� �(T ) whenever S ✓ T .

set with the node providing the largest marginal gain, provides a
(1 � 1/e)-approximation to the optimum [23]. The greedy algo-
rithm is computationally prohibitive, since selecting the node with
the largest marginal gain is #P-hard [7], and is typically approxi-
mated by numerous Monte Carlo simulations [19]. However, run-
ning many such simulations is extremely costly, and thus consid-
erable effort has been devoted to developing efficient and scalable
influence maximization algorithms: in §5 we will review some of
the latest advances in this area which help us devise our algorithms.

Datta et al. [9] study influence maximization with multiple items,
under a user attention constraint. However, as in classical influence
maximization, their objective is to maximize the overall influence
spread, and the budget is w.r.t. the size of the seed set, so with-
out any CPE model. Their diffusion model is the (topic-blind) IC
model, which also doesn’t model the competition among similar
items. Du et al. [12] study influence maximization over multiple
non-competing products subject to user attention constraints and
budget constraints, and develop approximation algorithms in a con-
tinuous time setting. Lin et al. [20] study the problem of maximiz-
ing influence spread from a website’s perspective: how to dynami-
cally push items to users based on user preference and social influ-
ence. The push mechanism is also subject to user attention bounds.
Their framework is based on Markov Decision Processes (MDPs).

Our work departs from the body of work in this field by looking
at the possibility of integrating viral marketing into existing social
advertising models and by studying a fundamentally different ob-
jective: minimize host’s regret. A noteworthy feature of our work
is that, as will be shown in §6, the budgets we use are such that
thousands of seeds are required to minimize regret. Scalability of
algorithms for selecting thousands of seeds over large networks has
not been demonstrated before.

While social advertising is still in its infancy, it fits in the more
general (and mature) area of computational advertising that has at-
tracted a lot of interest during the last decade. The central prob-
lem of computational advertising is to find the “best match” be-
tween a given user in a given context and a suitable advertise-
ment. The context could be a user entering a query in a search
engine (“sponsored search”), reading a web page (“content match”
and “display ads”), or watching a movie on a portable device, etc.
Considerable work has been done in sponsored search and display
ads [10, 13, 14, 16, 22]. Search engines show ads deemed relevant
to user-issued queries, so as to maximize click-through rates and
in turn, revenue. Revenue maximization in this context is formal-
ized as the well-known Adwords problem [?]. For a comprehensive
treatment, see a recent survey [21]. Our work fundamentally differs
from this as we are concerned with the virality of ads when making
allocations: this concept is still largely unexplored in computational
advertising.

Recently, Tucker [25] and Bakshy et al. [2] conducted field ex-
periments on Facebook and demonstrated that adding social proofs
to sponsored posts in Facebook’s News Feed significantly increased
the click-through rate. Their findings empirically confirm the ben-
efits of social influence, paving the way for the application of viral
marketing in social advertising, as we do in our work.

3. PROBLEM STATEMENT
The Ingredients. The computational problem studied in this paper
is from the host perspective. The host owns: (i) a directed social
graph G = (V,E), where an arc (u, v) means that v follows u,
thus v can see u’s posts and can be influenced by u; (ii) a topic
model for ads and users’ interest, defined on a space of K topics;
(iii) a topic-aware influence propagation model defined on the so-
cial graph G and the topic model.
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The key idea behind the topic modeling is to introduce a hidden
variable Z that can range among K states. Each topic (i.e., state
of the latent variable) represents an abstract interest/pattern and in-
tuitively models the underlying cause for each data observation (a
user clicking on an ad). In our setting the host owns a precom-
puted probabilistic topic model. The actual method used for pro-
ducing the model is not important at this stage: it could be, e.g.,
the popular Latent Dirichlet Allocation (LDA) [4], or any other
method. What is relevant is that the topic model maps each ad
i to a topic distribution ~�i over the latent topic space, formally:
�z
i = Pr(Z = z|i) with ⌃

K
z=1�

z
i = 1.

Propagation Model. The propagation model governs the way that
ads propagate in the social network driven by social influence. In
this work, we extend a simple topic-aware propagation model in-
troduced by Barbieri et al. [3], with Click-Through Probabilities
(CTPs) for seeds: we refer to the set of users Si that receive ad i
directly as a promoted post from the host as the seed set for ad i.
In the Topic-aware Independent Cascade model (TIC) of [3], the
propagation proceeds as follows: when a node u first clicks an ad
i, it has one chance of influencing each inactive neighbor v, inde-
pendently of the history thus far. This succeeds with a probability
that is the weighted average of the arc probability w.r.t. the topic
distribution of the ad i:

piu,v =

XK

z=1
�z
i · pzu,v. (1)

For each topic z and for a seed node u, the probability pzH,u

represents the likelihood of u clicking on a promoted post for topic
z. Thus the CTP �(u, i) that u clicks on the promoted post i in
absence of any social proof, is the weighted average (as in Eq. (1))
of the probabilities pzH,u w.r.t. the topic distribution of i. In our
extended TIC-CTP model, each u 2 Si accepts to be a seed, i.e.,
clicks on ad i, with probability �(u, i) when targeted. The rest of
the propagation process remains the same as in TIC.

Following the literature on influence maximization we denote
with �i(Si) the expected number of clicks (according to the TIC-
CTP model) for ad i when the seed set is Si. The corresponding
expected revenue is ⇧i(Si) = �i(Si) · cpe(i), where cpe(i) is the
cost-per-engagement that ai and the host have agreed on.

We observe that for a fixed ad i, with topic distribution ~�i, the
TIC-CTP model boils down to the standard Independent Cascade
(IC) model [19] with CTPs, where again, a seed may activate with a
probability. We next expose the relationship between the expected
spread a �ic

(S) for the classical IC model without CTPs, and the
expected spread under the TIC-CTP model for a given ad i.

LEMMA 1. Given an instance of the TIC-CTP model, and a
fixed ad i, with topic distribution ~�i, build an instance of IC by
setting the probability over each edge (u, v) as in Eq. 1. Now, con-
sider any node u, and any set S of nodes. Let �(u, i) be the CTP
for u clicking on the promoted post i. Then we have

�(u, i)[�ic
(S [ {u})� �ic

(S)] = �i(S [ {u})� �i(S). (2)

The simple proof, omitted due to space constraints, can be found
in [1]. A corollary of the above lemma is that for a fixed ~�i, the
expected spread �i(·) function under the TIC-CTP model, inher-
its the properties of monotonicity and submodularity from the IC
model (see Sec. 2 and [3,19]). In turn, ⇧i(Si) = cpe(i) · �i(Si) is
also monotone and submodular, being a non-negative linear com-
bination of monotone submodular functions.
Budget and Regret. As in any other advertisement model, we as-
sume that each advertiser ai has a finite budget Bi for a campaign
on ad i, which limits the maximum amount that ai will pay the host.

The host needs to allocate seeds to each of the ads that it has agreed
to promote, resulting in an allocation S = (S1, ..., Sh). The ex-
pected revenue from the campaign may fall short of the budget (i.e.,
⇧i(Si) < Bi) or overshoot it (i.e., ⇧i(Si) > Bi). An advertiser’s
natural goal is to make its expected revenue as close to Bi as possi-
ble: the former situation is lost opportunity to make money whereas
the latter amounts to “free service” by the host to the advertiser.
Both are undesirable. Thus, one option to define the host’s regret
for seed set allocation Si for advertiser ai is as |Bi �⇧i(Si)|.

Note that this definition of regret has the drawback that it does
not discriminate between small and large seed sets: given two seed
sets S1 and S2 with the same regret as defined above, and with
|S1| ⌧ |S2|, this definition does not prefer one over the other. In
practice, it is desirable to achieve a low regret with a small number
of seeds. By drawing on the inspiration from the optimization lit-
erature [6], where an additional penalty corresponding to the com-
plexity of the solution is added to the error function to discourage
overfitting, we propose to add a similar penalty term to discourage
the use of large seed sets. Hence we define the overall regret as

Ri(Si) = |Bi �⇧i(Si)|+ � · |Si|. (3)

Here, �·|Si| can be seen as a penalty for the use of a seed set: the
larger its size, the greater the penalty. This discourages the choice
of a large number of poor quality seeds to exhaust the budget. When
� = 0, no penalty is levied and the “raw” regret corresponding to
the budget alone is measured. We assume w.l.o.g. that the scalar
� encapsulates CPE such that the term �|Si| is in the same mone-
tary unit as Bi. How small/large should � be? We will address this
question in the next section.

The overall regret from an allocation S = (S1, ..., Sh) to all
advertisers is

R(S) =
Xh

i=1
Ri(Si). (4)

EXAMPLE 2. In Example 1, the regrets reported for allocations
A (6.6) and B (2.7) correspond to � = 0. When � = 0.1, the
regrets change to 6.6+0.1⇥6 = 7.2 for A and to 2.7+0.1⇥6 =

3.3 for B.

As noted in the introduction, in practice, the number of ads
that can be promoted to a user may be limited. The host can
even personalize this number depending on users’ activity. We
model this using an attention bound u for user u. An allocation
S = (S1, ..., Sh) is called valid provided for every user u 2 V ,
|{Si 2 S | u 2 Si}|  u, i.e., no more than u ads are pro-
moted to u by the allocation. We are now ready to formally state
the problem we study.

PROBLEM 1 (REGRET-MINIMIZATION). We are given h ad-
vertisers a1, . . . , ah, where each ai has an ad i described by topic-
distribution ~�i, a budget Bi, and a cost-per-engagement cpe(i).
Also given is a social graph G = (V,E) with a probability pzu,v
for each edge (u, v) 2 E and each topic z 2 [1,K], an attention
bound u, 8u 2 V , and a penalty parameter � � 0. The task is to
compute a valid allocation S = (S1, . . . , Sh) that minimizes the
overall regret:

S = argmin

T =(T1,...,T
h

):T
i

✓V

T is valid

R(T ).

Discussion. Note that ⇧i(Si) denotes the expected revenue from
advertiser ai. In reality, the actual revenue depends on the num-
ber of engagements the ad actually receives. Thus, the uncertainty
in ⇧i(Si) may result in a loss of revenue. Another concern could
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be that regret on the positive side (⇧i(Si) > Bi) is more accept-
able than on the negative side (⇧i(Si) < Bi), as one can argue
that maximizing revenue is a more critical goal even if it comes at
the expense of a small and reasonable amount of free service. Our
framework can accommodate such concerns and can easily address
them. For instance, instead of defining raw regret as |Bi�⇧i(Si)|,
we can define it as |B0

i � ⇧i(Si)|, where B0
i = (1 + �) · Bi. The

idea is to artificially boost the budget Bi with parameter � allow-
ing maximization of revenue while keeping the free service within
a modest limit. This small change has no impact on the validity of
our results and algorithms. Theorem 2 provides an upper bound on
the regret achieved by our allocation algorithm (§ 4.1). The bound
remains intact except that in place of the original budget Bi, we
should use the boosted budget B0

i. This remark applies to all our
results. We henceforth study the problem as defined in Problem 1.

4. THEORETICAL ANALYSIS
We first show that REGRET-MINIMIZATION is not only NP-hard

to solve optimally, but is also NP-hard to approximate within any
factor (Theorem 1). On the positive side, we propose a greedy al-
gorithm and conduct a careful analysis to establish a bound on the
regret it can achieve as a function of the budget (Theorems 2-4).

THEOREM 1. REGRET-MINIMIZATION is NP-hard and is NP-
hard to approximate within any factor.

PROOF. We prove hardness for the special case where � = 0,
using a reduction from 3-PARTITION [15].

Given a set X = {x1, ..., x3m} of positive integers whose sum is
C, with xi 2 (C/4m,C/2m), 8i, 3-PARTITION asks whether X
can be partitioned into m disjoint 3-element subsets, such that the
sum of elements in each partition is the same (= C/m). This prob-
lem is known to be strongly NP-hard, i.e., it remains NP-hard even
if the integers xi are bounded above by a polynomial in m [15].
Thus, we may assume that C is bounded by a polynomial in m.

Given an instance I of 3-PARTITION, we construct an instance
J of REGRET-MINIMIZATION as follows. First, we set the number
of advertisers h = m and let the cost-per-engagement (CPE) be 1

for all advertisers. Then, we construct a directed bipartite graph
G = (U [ V,E): for each number xi, G has one node ui 2 U
with xi � 1 outneighbors in V , with all influence probabilities set
to 1. We refer to members of U (resp., V ) as “U” nodes (resp., “V ”
nodes) below. Set all advertiser budgets to Bi = C/m, 1  i  m
and the attention bound of every user to 1. This will result in a
total of C nodes in the instance of REGRET-MINIMIZATION. Since
C is bounded by a polynomial in m, the reduction is achieved in
polynomial time.

We next show that if REGRET-MINIMIZATION can be solved
in polynomial time, so can 3-PARTITION, implying hardness. To
that end, assume there exists an algorithm A that solves REGRET-
MINIMIZATION optimally. We can use A to distinguish between
YES- and NO-instances of 3-PARTITION as follows. Run A on J
to yield a seed set allocation S = (S1, ..., Sm). We claim that I is
a YES-instance of 3-PARTITION iff R(S) = 0, i.e., the total regret
of the allocation S is zero.
(=)): Suppose R(S) = 0. This implies the regret of every adver-
tiser must be zero, i.e., ⇧i(Si) = Bi = C/m. We shall show that
in this case, each Si must consist of 3 “U” nodes whose spread
sums to C/m. From this, it follows that the 3-element subsets
Xi := {xj 2 X | uj 2 Si} witness the fact that I is a YES-
instance. Suppose |Si| 6= 3 for some i. It is trivial to see that each
seed set Si can contain only the “U” nodes, for the spread of any
“V ” node is just 1. If |Si| 6= 3, then ⇧i(Si) =

P
u
j

2S
i

xj 6=

Algorithm 1: Greedy Algorithm
Input : G = (V,E); �; attention bounds u, 8u 2 V ; items ~�i with

cpe(i) & budget Bi, i = 1, . . . , h; �(u, i), 8u8i
Output: S1, . . . , Sh

1 Si  ;, 8i = 1, . . . , h
2 while true do
3 (u, ai) argmaxv,a

j

Rj(Sj)�Rj(Sj [ {v}),
subject to: |{S`|v 2 S`}| < v and

Rj(Sj [ {v})  Rj(Sj))

4 if (u, ai) is null then return else Si  Si [ {u}

C/m, since all numbers are in the open interval (C/4m,C/2m).
This shows that every seed set Si in the above allocation must have
size 3, which was to be shown.
((=): Suppose X1, ..., Xm are disjoint 3-element subsets of X
that each sum to C/m. By choosing the corresponding “U”-nodes
we get a seed set allocation whose total regret is zero.

We just proved that REGRET-MINIMIZATION is NP-hard. To
see hardness of approximation, suppose B is an algorithm that ap-
proximates REGRET-MINIMIZATION within a factor of ↵. That is,
the regret achieved by algorithm B on any instance of REGRET-
MINIMIZATION is  ↵ · OPT , where OPT is the optimal (least)
regret. Using the same reduction as above, we can see that the opti-
mal regret on the reduced instance J above is 0. On this instance,
the regret achieved by algorithm B is ↵ ·0 = 0, i.e., algorithm B
can solve REGRET-MINIMIZATION optimally in polynomial time,
which is shown above to be impossible unless P = NP .

4.1 A Greedy Algorithm
Due to the hardness of approximation of Problem 1, no polyno-

mial algorithm can provide any theoretical guarantees w.r.t. opti-
mal overall regret. Still, instead of jumping to heuristics without
any guarantee, we present an intuitive greedy algorithm (pseudo-
code in Algorithm 1) with theoretical guarantees in terms of the
total budget. It is worth noting that analyzing regret w.r.t. the total
budget has real-world relevance, as budget is a concrete monetary
and known quantity (unlike optimal value of regret) which makes
it easy to understand regret from a business perspective.

The algorithm starts by initializing all seed sets to be empty
(line 1). It keeps selecting and allocating seeds until regret can no
longer be minimized. In each iteration, it finds a user-advertiser
pair (u, ai) such that u’s attention bound is not reached (that is,
|{Si|u 2 Si}| < u) and adding u to Si (the seed set of ai)
yields the largest decrease in regret among all valid pairs. Clearly,
we want to ensure that regret does not increase in an iteration (that
is, Ri(Si [ {u}) < Ri(Si)) (line 3). The user u is then added to
Si. If no such pair can be found, that is, regret cannot be reduced
further, the algorithm terminates (line 4).

Before stating our results on bounding the overall regret achieved
by the greedy algorithm, we identify extreme (and unrealistic) sit-
uations where no such guarantees may be possible.
Practical considerations. Consider a network with n users, one
advertiser with a CPE of 1 and a budget B � n. Assume CTPs
are all 1. Clearly, even if all n users are allocated to the advertiser,
the regret approaches 100% of B, as most of the budget cannot be
tapped.

At another extreme, consider a dense network with n users (e.g.,
clique), one advertiser with a cpe of 1 and a budget B ⌧ n. Sup-
pose the network has high influence probabilities, with the result
that assigning any one seed u to the advertiser will result in an ex-
pected revenue ⇧({u}) � B. In this case, the allocation with the
least regret is the empty allocation (!) and the regret is exactly B!
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In many practical settings, the budgets are large enough that the
marginal gain of any one node is a small fraction of the budget
and small enough compared to the network size, in that there are
enough nodes in the network to allocate to each advertiser in order
to exhaust or exceed the budget.

4.2 The General Case
In this subsection, we establish an upper bound on the regret

achieved by Algorithm 1, when every candidate seed has essen-
tially an unlimited attention bound. For convenience, we refer to
the first term in the definition of regret (cf. Eq. 3) as budget-regret
and the second term as seed-regret. The first one reflects the regret
arising from undershooting or overshooting the budget and the sec-
ond arises from utilizing seeds which are the host’s resources. For
a seed set Si for ad i, the marginal gain of a node x 2 V \Si is de-
fined as MGi(x|Si) := ⇧i(Si[{x})�⇧i(Si). By submodularity,
the marginal gain of any node is the greatest w.r.t. the empty seed
set, i.e., MGi(x|;) = ⇧i({x}). Let pi be the maximum marginal
gain of any node w.r.t. ad i, as a fraction of its budget Bi, i.e.,
pi := maxx2V ⇧i({x})/Bi. As discussed at the end of the pre-
vious subsection, we assume that the network and the budgets are
such that pi 2 (0, 1), for all ads i. In practice, pi tends to be a small
fraction of the budget Bi. Finally, we define pmax := max

h
i=1 pi

to be the maximum pi among all advertisers.

THEOREM 2. Suppose that for every node u, the attention
bound u � h, the number of advertisers, and that �  �(u, i) ·
cpe(i), 8 user u and ad i. Then the regret incurred by Algorithm 1
upon termination is at most

hX

i=1

piBi + �

2

+ � ·
hX

i=1

✓
1 + sioptdln

1

pi/2� �/2Bi
e
◆
,

where siopt is the smallest number of seeds required for reaching or
exceeding the budget Bi for ad i.

Discussion: The term �(u, i) · cpe(i) corresponds to the expected
revenue from user u clicking on i (without considering the net-
work effect). Thus, the assumption on �, that it is no more than
the expected revenue from any one user clicking on an ad, keeps
the penalty term small, since in practice click-through probabilities
tend to be small. Secondly, the regret bound given by the theorem
can be understood as follows. Upon termination, the budget-regret
from Greedy’s allocation is at most (1/2)pmaxB (plus a small con-
stant �/2). The theorem says that Greedy achieves such a budget-
regret while being frugal w.r.t. the number of seeds it uses. Indeed,
its seed-regret is bounded by the minimum number of seeds that an
optimal algorithm would use to reach the budget, multiplied by a
logarithmic factor.

PROOF OF THEOREM 2. We establish a series of claims.

CLAIM 1. Suppose Si is the seed set allocated to advertiser
ai and ⇧i(Si) < Bi. Then the greedy algorithm will add a
node x to Si iff |⇧i(Si [ {x}) � Bi| < |⇧i(Si) � Bi| and
x = argmaxw2V \S

i

(|⇧i(Si) � Bi| � |⇧i(Si [ {w}) � Bi|),
with ties broken arbitrarily. (Proof in [1].)

CLAIM 2. The budget-regret of Greedy for advertiser ai, upon
termination, is at most (piBi + �)/2.

PROOF OF CLAIM: Consider any iteration j. Let x be the seed
allocated to advertiser ai in this iteration. The following cases arise.
• Case 1: ⇧i(Si [ {x}) < piBi. By submodularity, for any node
y 2 V \ (Si [ {x}) : MGi(y|Si [ {x})  MGi(y|;)  piBi.

Thus, from Claim 1, we know the algorithm will continue adding
seeds to Si until Case 2 (below) is reached.
• Case 2: ⇧(Si [ {x}) � piBi.

• Case 2a: ⇧(Si [ {x}) < Bi. If x is the last seed added to Si,
then 8y 2 V \ (Si [ {x}) : Bi � ⇧(Si [ {x}) + �(|Si| + 1) <
⇧i(Si [ {x} [ {y})�Bi + �(|Si|+ 2). Notice that upon adding
any such y, a cross-over must occur w.r.t. Bi: suppose otherwise,
then adding y would cause net drop in regret and the algorithm
would just add y to Si [ {x}, a contradiction. Simplifying, we get
Bi � ⇧i(Si [ {x}) < ⇧i(Si [ {x} [ {y}) � Bi + �. Also by
submodularity, we have ⇧i(Si[{x}[{y})�⇧i(Si[{x})  piBi.
Thus,
=) ⇧i(Si [ {x} [ {y})�Bi +Bi �⇧i(Si [ {x})  piBi.
=) 2(Bi �⇧i(Si [ {x}))� �  piBi.
=) Bi �⇧i(Si [ {x})  (piBi + �)/2.

• Case 2b: ⇧i(Si [ {x}) > Bi. Since Greedy just added x
to Si, we infer that ⇧i(Si) < Bi and [Bi � ⇧i(Si)] + �|Si| �
⇧i(Si [ {x})�Bi + �(|Si|+ 1).
=) Bi � ⇧i(Si) � ⇧i(Si [ {x}) � Bi + �. Clearly, x must be
the last seed added to Si, as any future additions will strictly raise
the regret. By submodularity, we have

⇧i(Si [ {x})�⇧i(Si)  piBi.
=) ⇧i(Si [ {x})�Bi +Bi �⇧i(Si)  piBi.
=) 2(⇧i(Si [ {x})�Bi) + �  piBi.
=) ⇧i(Si [ {x})�Bi  (piBi � �)/2.

By combining both cases, we conclude that the budget-regret of
Greedy for ai upon termination is  (piBi + �)/2.

Next, define ⌘0 = Bi. Let Sj
i be the seed set assigned to adver-

tiser ai by Greedy after iteration j. Let ⌘j := ⌘0�⇧i(S
j
i ), i.e., the

shortfall of the achieved revenue w.r.t. the budget Bi, after iteration
j, for advertiser ai.

CLAIM 3. After iteration j, 9x 2 V \ Sj
i : ⇧i(Si [ {x}) �

⇧i(Si) � 1/siopt · ⌘j , where siopt is the minimum number of seeds
needed to achieve a revenue no less than Bi.

PROOF OF CLAIM: Suppose otherwise. Let S⇤
i be the seeds al-

located to advertiser ai by the optimal algorithm for achieving
a revenue no less than Bi. Add seeds in S⇤

i \ Sj
i one by one

to Sj
i . Since none of them has a marginal gain w.r.t. Si that is

� 1/siopt · ⌘j , it follows by submodularity that ⇧i(S
j
i [ S⇤

i ) 
⇧(Sj

i ) + siopt · 1/siopt · ⌘j < Bi, a contradiction.
It follows from the above proof that ⌘j  ⌘j�1 · (1 � 1/siopt),

which implies that ⌘j  1/⌘j�1 · e�1/si
opt . Unwinding, we get

⌘j  ⌘0 · e�j/si
opt . Suppose Greedy stops in ` iterations. We

showed above that the budget-regret of Greedy, for advertiser ai,
at the end of this iteration, is either at most (pi ·Bi + �)/2 or is at
most (piBi��)/2 depending on the case that applies. Of these, the
latter is more stringent w.r.t. the #iterations Greedy will take, and
hence w.r.t. the #seeds it will allocate to ai. So, in iteration ` � 1,
we have ⌘`�1 � (piBi � �)/2. That is,
⌘`�1 = Bi · e�(`�1)/si

opt � (piBi � �)/2, or
=) e�(`�1)/si

opt � (pi � �/Bi])/2.
=) `  1+ siopt · dln{1/(pi/2��/2Bi)}e. Notice that this is an
upper bound on |S`

i |. We just proved

CLAIM 4. When Greedy terminates, the seed-regret for adver-
tiser ai, upon termination, is at most � · (1+ siopt · dln{1/(pi/2�
�/2Bi)}e).

Combining all the claims above, we can infer that the overall
regret of Greedy upon termination is at most

Ph
i=1(piBi+�)/2+

�
Ph

i=1[1 + siopt(1 + dln{1/(pi/2� �/2Bi)}e.
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Figure 2: Interpretation of Theorem 3.

4.3 The Case of � = 0

In this subsection, we focus on the regret bound achieved by
Greedy in the special case that � = 0, i.e., the overall regret is just
the budget-regret. While the results here can be more or less seen
as special cases of Theorem 2, it is illuminating to restrict attention
to this special case. Our first result follows.

THEOREM 3. Consider an instance of REGRET-
MINIMIZATION that admits a seed allocation whose total
regret is bounded by a third of the total budget. Then Algorithm 1
outputs an allocation S with a total regret R(S)  1

3 · B, where
B =

Ph
i=1 Bi is the total budget.

In the proof of this theorem [1] three cases arise, as illustrated in
Fig. 2. The crux of the proof consists in showing that If the revenue
achieved falls in Case 2, then Greedy will add more seeds until
Case 1 is reached and that Case 3 will never happen.

The regret bound established above is conservative, and unlike
Theorem 2, does not make any assumptions about the marginal
gains of seed nodes. In practice, as previously noted, most real net-
works tend to have low influence probabilities and consequently,
the marginal gain of any single node tends to be a small fraction
of the budget. Using this, we can establish a tighter bound on the
regret achieved by Greedy.

THEOREM 4. On any input instance that admits an allocation
with total regret bounded by min{ p

max

2 , 1�pmax}·B, Algorithm 1
delivers an allocation S so that R(S)  min{ p

max

2 , 1�pmax}·B.

We note that this claim generalizes Theorem 3. In fact, the two
bounds: p

max

2 and 1�pmax meet at the value of 1/3 when pmax =

2/3. In practice, pmax may be much smaller, making the bound
better. Full proofs of both theorems are in [1].

5. SCALABLE ALGORITHMS
Algorithm 1 (Greedy) involves a large number of calls to in-

fluence spread computations, to find the node for each advertiser
ai that yields the maximum decrease in regret Ri(Si). Given any
seed set S, computing its exact influence spread �(S) under the IC
model is #P-hard [7], and this hardness trivially carries over to the
topic-aware IC model [3] with CTPs. A common practice is to use
Monte Carlo (MC) simulations to estimate influence spread [19].
However, accurate estimation requires a large number of MC sim-
ulations, denoted r, which is prohibitively expensive and not scal-
able: Algorithm 1 runs in O(

Ph
i=1

B
i

cpe(i) ·(1+
p
max

2 ) · |V | · |E| ·r)
time, where

Ph
i=1

B
i

cpe(i) · (1 +

p
max

2 ) is the maximum possible
number of seed selection iterations. Thus, to make Algorithm 1
scalable, we need an alternative approach.

In the influence maximization literature, considerable effort
has been devoted to developing more efficient and scalable algo-
rithms [5, 7, 8, 18, 24]. Of these, the IRIE algorithm proposed by
Jung et al. [18] is a state-of-the-art heuristic for influence maxi-
mization under the IC model and is orders of magnitude faster than

MC simulations. We thus use a variant of Greedy, GREEDY-IRIE,
where IRIE replaces MC simulations for spread estimation. It is
one of the strong baselines we will compare our main algorithm
with in §6. In this section, we instead propose a scalable algorithm
with guaranteed approximation for influence spread.

Recently, Borgs et al. [5] proposed a quasi-linear time random-
ized algorithm based on the idea of sampling “reverse-reachable”
(RR) sets in the graph. It was improved to a near-linear time ran-
domized algorithm – Two-phase Influence Maximization (TIM) –
by Tang et al. [24]. Cohen et al. [8] proposed a sketch-based design
for fast computation of influence spread, achieving efficiency and
effectiveness comparable to TIM. We choose to extend TIM as it is
the current state-of-the-art influence maximization algorithm and is
more adapted to our needs.

In this section, we adapt the essential ideas from Greedy, RR-
sets sampling, and the TIM algorithm to devise an algorithm for
REGRET-MINIMIZATION, called Two-phase Iterative Regret Mini-
mization (TIRM for short), that is much more efficient and scalable
than Algorithm 1 with MC simulations. Our adaptation to TIM is
non-trivial, since TIM relies on knowing the exact number of seeds
required. In our framework, the number of seeds needed is driven
by the budget and the current regret and so is dynamic. We first
give the background on RR-sets sampling, review the TIM algo-
rithm [24], and then describe our TIRM algorithm.

5.1 Reverse-Reachable Sets and TIM
RR-sets Sampling: Brief Review. We first review the definition
of RR-sets, which is the backbone of both TIM and our proposed
TIRM algorithm. Conceptually speaking, a random RR-set R from
G is generated as follows. First, for every edge (u, v) 2 E, remove
it from G w.p. 1�pu,v: this generates a possible world X . Second,
pick a target node w uniformly at random from V . Then, R con-
sists of the nodes that can reach w in X . This can be implemented
efficiently by first choosing a target node w 2 V uniformly at ran-
dom and performing a breadth-first search (BFS) starting from it.
Initially, create an empty BFS-queue Q, and insert all of w’s in-
neighbors into Q. The following loop is executed until Q is empty:
Dequeue a node u from Q and examine its incoming edges: for
each edge (v, u) where v 2 N in

(u), we insert v into Q w.p. pv,u.
All nodes dequeued from Q thus form a RR-set.

The intuition behind RR-sets sampling is that, if we have sam-
pled sufficiently many RR-sets, and a node u appears in a large
number of RR sets, then u is likely to have high influence spread in
the original graph and is a good candidate seed.
TIM: Brief Review. Given an input graph G = (V,E) with in-
fluence probabilities and desired seed set size s, TIM, in its first
phase, computes a lower bound on the optimal influence spread of
any seed set of size s, i.e., OPTs := maxS✓V,|S|=s �

ic
(S). Here

�ic
(S) refers to the spread w.r.t. classic IC model. TIM then uses

this lower bound to estimate the number of random RR-sets that
need to be generated, denoted ✓. In its second phase, TIM simply
samples ✓ RR-sets, denoted R, and uses them to select s seeds, by
solving the Max s-Cover problem: find s nodes, that between them,
appear in the maximum number of sets in R. This is solved using a
well-known greedy procedure: start with an empty set and repeat-
edly add a node that appears in the maximum number of sets in R
that are not yet “covered”.

TIM provides a (1� 1/e� ✏)-approximation to the optimal so-
lution OPTs with high probability. Also, its time complexity is
O((s + `)(|V | + |E|) log |V |/✏2), while that of the greedy algo-
rithm (for influence maximization) is ⌦(k|V ||E| · poly(✏�1

)).
Theoretical Guarantees of TIM. Consider any collection of ran-
dom RR-sets, denoted R. Given any seed set S, we define FR(S)
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as the fraction of R covered by S, where S covers an RR-set
iff it overlaps it. The following proposition says that for any S,
|V | · FR(S) is an unbiased estimator of �ic

(S).

PROPOSITION 1 (COROLLARY 1, [24]). Let S ✓ V be any
set of nodes, and R be a collection of random RR sets. Then,
�ic

(S) = E[|V | · FR(S)].

The next proposition shows the accuracy of influence spread es-
timation and the approximation gurantee of TIM. Given any seed
set size s and " > 0, define L(s, ") to be:

L(s, ") = (8 + 2")n ·
` log n+ log

�
n
s

�
+ log 2

OPTs · "2
, (5)

where ` > 0, ✏ > 0.

PROPOSITION 2 (LEMMA 3 & THEOREM 1, [24]). Let ✓ be
a number no less than L(s, "). Then for any seed set S with |S| 
s, the following inequality holds w.p. at least 1� n�`/

�
n
s

�
:

��|V | · FR(S)� �ic
(S)

�� < "

2

·OPTs. (6)

Moreover, with this ✓, TIM returns a (1� 1/e� ✏)-approximation
to OPTs w.p. 1� n�`.

This result intuitively says that as long as we sample enough
RR-sets, i.e., |R| � ✓, the absolute error of using |V | · FR(S)
to estimate �ic

(S) is bounded by a fraction of OPTs with high
probability. Furthermore, this gives approximation guarantees for
influence maximization. Next, we describe how to extend the ideas
of RR-sets sampling and TIM for regret minimization.

5.2 Two-phase Iterative Regret Minimization
A straightforward application of TIM for solving REGRET-

MINIMIZATION will not work. There are two critical challenges.
First, TIM requires the number of seeds s as input, while the input
of REGRET-MINIMIZATION is in the form of monetary budgets,
and thus we do not know the precise number of seeds that should
be allocated to each advertiser beforehand. Second, our influence
propagation model has click-through probabilities (CTPs) of seeds,
namely �(u, i)’s. This is not accounted for in the RR-sets sampling
method: it implicitly assumes that each seed becomes active w.p. 1.

We first discuss how to adapt RR-sets sampling to incorporate
CTPs. Then we deal with unknown seed set sizes.
RR-sets Sampling with Click-Through Probabilities. Recall that
in our model, when a node u is chosen as a seed for advertiser ai,
it has a probability �(u, i) to accept being seeded, i.e., to actually
click on the ad.

For ease of exposition, in the rest of this subsubsection only, we
assume that there is only one advertiser, and the CTP of each user
u for this advertiser is simply �(u) 2 [0, 1]. The technique we
discuss and our results readily extend to any number of advertisers.
A naive way to incorporate CTPs is as follows. For all u 2 V , w.p.
�(u), mark it “live”, and w.p. 1 � �(u), mark it “blocked”. After
that, generate RR-sets as described in the previous subsection, with
an additional check, whether a node is live. Precisely, unless both
node v is live and the associated edge e = (u, v) has a positive
outcome (w.p. p(e)), u will not be added to the BFS queue in the
RR-set generation process.

For clarity, call the random RR-sets generated with CTPs incor-
porated as above, RR-Sets with CTPs (RRC-sets for short). Let Q
be a collection of RRC-sets. Similar to FR(S), for any set S, we
define FQ(S) to be the fraction of Q that overlap with S. Let
�icctp

(S) be the influence spread of a seed set S under the IC

model with CTPs. We first establish a similar result to Proposition 1
which says that |V |FQ(S) is an unbiased estimator of �icctp

(S).

LEMMA 2. Given a graph G = (V,E) with influence proba-
bilities on edges, for any S ✓ V , �icctp

(S) = E[|V | · FQ(S)].

PROOF. We show the following equality holds:

�icctp
(S)/|V | = E[FQ(S)]. (7)

The LHS of (7) equals to the probability that a node chosen uni-
formly at random can be activated by seed set S where a seed u 2 S
may become live with CTP �(u), while the RHS of (7) equals to
the probability that S intersects with a random RRC-set. They both
equal to the probability that a randomly chosen node is reachable
by S in a possible world corresponding to the IC-CTP model.

In principle, RRC-sets are those we should work with for the
purpose of seed selection for REGRET-MINIMIZATION. However,
note that by Equation (5) and Proposition 2, the number of samples
required is inversely proportional to the value of the optimal solu-
tion OPTs. However, in reality, click-through rates on ads are quite
low, and thus OPTs, taking CTPs into account, will decrease by at
least two orders of magnitude (e.g., OPTs with CTP 0.01 would
become 100 times smaller than OPTs with CTP 1). This in turn
translates into at least two orders of magnitude more RRC-sets to
be sampled, which ruins scalability.

An alternative way of incorporating CTPs is to pretend as though
all CTPs were 1. We still generate RR-sets, and use the estimations
given by RR-sets to compute revenue. More specifically, for any
S ✓ V and any u 2 V \ S, we compute the marginal gain of u
w.r.t. S, namely �C(S [ {u}) � �C(S), by �(u) · |V | · [FR(S [
{u})� FR(S)]. This avoids sampling of numerous RRC-sets.

We can show that in expectation, computing marginal gain in IC-
CTP model using RRC-sets is essentially equivalent to computing
it under the IC model using RR-sets in the manner above.

THEOREM 5. Consider any u 2 S and any S ✓ V . Let �(u)
be the probability that u accepts to become a seed. Let R and Q
be a collection of RR-sets and of RRC-sets, respectively. Then,

�(u)(E[FR(S [ {u})]� E[FR(S)]) = E[FQ(S [ {u})]� E[FQ(S)].

This theorem (proof in [1]) shows even with CTPs, we can still
use the usual RR-sets sampling process for estimating spread ef-
ficiently and accurately as long as we multiply marginal gains by
CTPs. This result carries over to the setting of multiple advertisers.

Iterative Seed Set Size Estimation. As mentioned earlier, TIM
needs the required number of seeds s as input, which is not avail-
able for the REGRET-MINIMIZATION problem. From the advertiser
budgets, there is no obvious way to determine the number of seeds.
This poses a challenge since the required number of RR-sets (✓)
depends on s. To circumvent this difficulty, we propose a frame-
work which first makes an initial guess at s, and then iteratively
revises the estimated value, until no more seeds are needed, while
concurrently selecting seeds and allocating them to advertisers.

For ease of exposition, let us first consider a single advertiser
ai. Let Bi be the budget of ai and let si be the true number of
seeds required to minimize the regret for ai. We do not know si and
estimate it in successive iterations as s̃ti . We start with an estimated
value for si, denoted s̃1i , and use it to obtain a corresponding ✓1i
(cf. Proposition 2). If ✓ti > ✓t�1

i (assuming ✓0i = 0 for all i), we
will need to sample an additional (✓ti � ✓t�1

i ) RR-sets, and use all
RR-sets sampled up to this iteration to select (s̃ti� s̃t�1

i ) additional
seeds. After adding those seeds, if ai’s budget Bi is not yet reached,
this means more seeds can be assigned to ai. Thus, we will need
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Algorithm 2: TIRM

Input : G = (V,E); attention bounds u, 8u 2 V ; items ~�i with
cpe(i) & budget Bi, i = 1, . . . , h; CTPs �(u, i), 8u8i

Output: S1, · · · , Sh

1 foreach j = 1, 2, . . . , h do
2 Sj  ;; Qj  ;; // a priority queue

3 sj  1; ✓j  L(sj , "); Rj  Sample(G, �j , ✓j);

4 while true do
5 foreach j = 1, 2, . . . , h do
6 (vj , covj(vj)) SelectBestNode(Rj) ; // Alg 3

7 FR
j

(vj) covj(vj)/✓j ;
8 i argmax

h
j=1 Rj(Sj)�Rj(Sj [ {vj})
subject to: Rj(Sj [ {vj}) < Rj(Sj);

//(user, ad) pair with max drop in regret.

9 if i 6= NULL then
10 Si  Si [ {vi};
11 Qi.insert(vi, covi(vi));
12 Ri  Ri \ {R | vi 2 R ^ R 2 Ri};
13 //remove RR-sets that are covered;
14 else return ;
15 if |Si| = si then
16 si  si + bRi(Si)/(cpe(i) · n · �(vi, i) · FR

i

(vi))c;
17 ✓i  max{L(si, "), ✓i};
18 Ri  Ri [ Sample(G, �i,max{0, L(si, ")� ✓i)};
19 ⇧i(Si) UpdateEstimates(Ri, ✓i, Si, Qi);

//revise estimates to reflect newly

added RR-sets;
20 Ri(Si) |Bi �⇧i(Si)|;

Algorithm 3: SelectBestNode(Rj)
Output: (u, covj(u))

1 u argmaxv2V |{R | v 2 R ^ R 2 Rj}|
subject to: |{Sl|v 2 Sl}| < v ;

2 covj(u) |{R | u 2 R ^ R 2 Rj}|; //find best seed

for ad aj as well as its coverage.

Algorithm 4: UpdateEstimates(Ri, ✓i, Si, Qi)
Output: ⇧i(Si)

1 ⇧i(Si) 0 ;
2 for j = 0, . . . , |Si|� 1 do
3 (v, cov(v)) Qi[j] ;
4 cov

0
(v) |{R | v 2 R,R 2 Ri}|;

5 Qi.insert(v, cov(v) + cov

0
(v));

6 ⇧i(Si) 
⇧i(Si) + cpe(i) · n · �(v, i) · ((cov(v) + cov

0
(v))/✓i);

//update coverage of existing seeds w.r.t.

new RR-sets added to collection.

another iteration and we further revise our estimation of si. The
new value, s̃t+1

i , is obtained by adding to s̃ti the floor function of the
ratio between the current regret Ri(Si) and the marginal revenue
contributed by the s̃ti-th seed (i.e., the latest seed). This ensures we
do not overestimate, thanks to submodularity, as future seeds have
diminishing marginal gains.

Algorithm 2 outlines TIRM, which integrates the iterated seed
set size estimation technique above, suitably adapted to multi-
advertiser setting, along with the RR-set based coverage estimation
idea of TIM, and uses Theorem 5 to deal with CTPs. Notice that
the core logic of the algorithm is still based on greedy seed selec-
tion as outlined in Algorithm 1. Algorithm TIRM works as follows.
For every advertiser ai, we initially set its seed budget si to be
1 (a conservative, but safe estimate), and find the first seed using
random RR-sets generated accordingly (line 3). In the main loop,

we follow the greedy selection logic of Algorithm 1. That is, every
time, we identify the valid user-advertiser pair (u, ai) that gives
the largest decrease in total regret and allocate u to Si (lines 6 to
12), paying attention to the attention bound of u (line 1 of Algo-
rithm 3). If |Si| reaches the current estimate of si after we add u,
then we increase si by bRi(Si)/(cpe(i) · n · FR

i

(u))c (lines 15
to 20), as described above, as long as the regret continues to de-
crease. Note that after adding additional RR-sets, we should update
the spread estimation of current seeds w.r.t. the new collection of
RR-sets (line 19). This ensures that future marginal gain computa-
tions and selections are accurate. This is effectively a lower bound
on the number of additional seeds needed, as subsequent seeds will
not have marginal gain higher than that of u due to submodularity.
As in Algorithm 1, TIRM terminates when all advertisers have sat-
urated, i.e., no additional seed can bring down the regret. Note that
in Algorithm 4, we update the estimated revenue of existing seeds
w.r.t. the additional RR-sets sampled, to keep them accurate.
Estimation Accuracy of TIRM. At its core, TIRM, like TIM, es-
timates the spread of chosen seed sets, even though its objective is
to minimize regret w.r.t. a monetary budget. Next, we show that the
influence spread of seeds estimated by TIRM enjoys bounded error
guarantees similar to those chosen by TIM (see Proposition 2).

THEOREM 6. At any iteration t of iterative seed set size esti-
mation in Algorithm TIRM, for any set Si of at most s =

Pt
j=1 s

j

nodes, |n · FRt(Si)� �i(Si)| < "
2 ·OPTs holds with probability

at least 1 � n�`/
�
n
s

�
, where �i(S) is the expected spread of seed

set Si for ad i.

PROOF. When t = 1, our claim follows from Proposition 2.
When t > 1, by definition of our iterative sampling, the number
of RR-sets, |Rt| = maxj=1,...,t Lj , where Lj = L(

Pj
a=1 s

a, ").
This means at any iteration t, the number of RR-sets is always suf-
ficient for Eq. (6) to hold. Hence, for the set Si containing seeds
accumulated up to iteration t, our claim on the absolute error in the
estimated spread of Si holds, by Proposition 2.

Time Complexity of TIRM. For each ad i, let ⌧i be the number of
iterations. The total number of seeds TIRM generates for i is thusP⌧

i

t=1bR
t
i/MGt

ic + 1, where Rt
i and MGt

i are used to compute
the incremental update for si in line 16 in Algorithm 2. Clearly, this
sum is upper-bounded by ŝi := Bi(1 + pmax/2)/min

⌧
i

t=1 MGt
i ,

where Bi is the budget of ad i. Therefore, adapting the time com-
plexity of TIM [24], the time complexity if TIRM is

Ph
i=1((ŝi +

`) · (|V |+ |E|) · log |V | · "�2
).

6. EXPERIMENTS
We conduct an empirical evaluation of the proposed algorithms.

The goal is manifold. First, we would like to evaluate the quality of
the algorithms as measured by the regret achieved, the number of
seeds they used to achieve a certain level of budget-regret, and the
extent to which the attention bound () and the penalty factor (�)
affect their performance. Second, we evaluate the efficiency and
scalability of the algorithms w.r.t. advertiser budgets, which indi-
rectly control the number of seeds required, and w.r.t. the number
of advertisers. We measure both running time and memory usage.
Datasets. Our experiments are based on four real-world social
networks, whose basic statistics are summarized in Table 1. Of
the four datasets, we use FLIXSTER and EPINIONS for our qual-
ity experiments and DBLP and LIVEJOURNAL for scalability ex-
periments. FLIXSTER is from a social movie-rating site (http:
//www.flixster.com/). The dataset records movie ratings
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FLIXSTER EPINIONS DBLP LIVEJOURNAL
#nodes 30K 76K 317K 4.8M
#edges 425K 509K 1.05M 69M

type directed directed undirected directed

Table 1: Statistics of network datasets.

Budgets CPEs
Dataset mean max min mean max min

FLIXSTER 375 200 600 5.5 5 6
EPINIONS 215 100 350 4.35 2.5 6

Table 2: Advertiser budgets and cost-per-engagement values

from users along with their timestamps. We use the topic-aware in-
fluence probabilities and the item-specific topic distributions pro-
vided by the authors of [3], who learned the probabilities using
maximum likelihood estimation for the TIC model with K = 10

latent topics. In our quality experiments, we set the number of ad-
vertisers h to be 10, and used 10 of the learnt topic distributions
from Flixster dataset, where for each ad i , its topic distribution ~�i
has mass 0.91 in the i-th topic, and 0.01 in all others. CTPs are
sampled uniformly at random from the interval [0.01, 0.03] for all
user-ad pairs, in keeping with real-life CTPs (see §1).

EPINIONS is a who-trusts-whom network taken from a con-
sumer review website (http://www.epinions.com/). For
Epinions, we similarly set h = 10 and use K = 10 latent topics.
For each ad i, we use synthetic topic distributions ~�i, by borrowing
the ones used in FLIXSTER. For all edges and topics, the topic-
aware influence probabilities are sampled from an exponential dis-
tribution with mean 30, via the inverse transform technique [11] on
the values sampled randomly from uniform distribution U(0, 1).

For scalability experiments, we adopt two large networks
DBLP and LIVEJOURNAL (both are available at http://snap.
stanford.edu/). DBLP is a co-authorship graph (undirected)
where nodes represent authors and there is an edge between two
nodes if they have co-authored a paper indexed by DBLP. We direct
all edges in both directions. LIVEJOURNAL is an online blogging
site where users can declare which other users are their friends.

In all datasets, advertiser budgets and CPEs are chosen in such
a way that the total number of seeds required for all ads to meet
their budgets is less than n. This ensures no ads are assigned empty
seed sets. For lack of space, we do not enumerate all the numbers,
but rather give a statistical summary in Table 2. Notice that since
the CTPs are in the 1-3% range, the effective number of targeted
nodes is correspondingly larger. We defer the numbers for DBLP
and LIVEJOURNAL to §6.2.

All experiments were run on a 64-bit RedHat Linux server with
Intel Xeon 2.40GHz CPU and 65GB memory. Our largest con-
figuration is LIVEJOURNAL with 20 ads, which effectively has
69M · 20 = 1.4B edges; this is comparable with [24], whose
largest dataset has 1.5B edges (Twitter).
Algorithms. We test and compare the following four algorithms.
• MYOPIC: A baseline that assigns every user u 2 V in total

u most relevant ads i, i.e., those for which u has the high-
est expected revenue, not considering any network effect, i.e.,
�(u, i) · cpe(i). It is called “myopic” as it solely focuses on
CTPs and CPEs and effectively ignores virality and budgets.
Allocation A in Fig. 1 follows this baseline.

• MYOPIC+: This is an enhanced version of MYOPIC which
takes budgets, but not virality, into account. For each ad, it first
ranks users w.r.t. CTPs and then selects seeds using this order
until budget is exhausted. User attention bounds are taken into
account by going through the ads round-robin and advancing

to the next seed if the current node u is already assigned to u

ads.
• GREEDY-IRIE: An instantiation of Algorithm 1, with the IRIE

heuristic [18] used for influence spread estimation and seed
selection. IRIE has a damping factor ↵ for accurately estimat-
ing influence spread in its framework. Jung et al. [18] report
that ↵ = 0.7 performs best on the datasets they tested. We did
extensive testing on our datasets and found that ↵ = 0.8 gave
the best spread estimation, and thus used 0.8 in all quality ex-
periments.

• TIRM: Algorithm 2. We set " to be 0.1 for quality experiments
on FLIXSTER and EPINIONS, and 0.2 for scalability experi-
ments on DBLP and LIVEJOURNAL (following [24]).

For all algorithms, we evaluate the final regret of their output
seed sets using Monte Carlo simulations (10K runs) for neutral,
fair, and accurate comparisons.

6.1 Results of Quality Experiments
Overall regret. First, we compare overall regret (as defined in
Eq. (4)) against attention bound u, varied from 1 to 5, with two
choices 0 and 0.5 for �. Fig. 3 shows that the overall regret (in log-
scale) achieved by TIRM and GREEDY-IRIE are significantly lower
than that of MYOPIC and MYOPIC+. For example, on FLIXSTER
with � = 0 and u = 1, overall regrets of TIRM, GREEDY-IRIE,
MYOPIC, and MYOPIC+, expressed relative to the total budget, are
2.5%, 26.1%, 122%, 141%, respectively. On EPINIONS with the
same setting, the corresponding regrets are 6.5%, 15.9%, 145%,
and 205%. MYOPIC, and MYOPIC+ typically always overshoot the
budgets as they are not vitality-aware when choosing seeds. Notice
that even though MYOPIC+ is budget conscious, it still ends up
overshooting the budget as a result of not factoring in virality in
seed allocation. In almost all cases, overall regret by TIRM goes
down as u increases. The trend for MYOPIC and MYOPIC+ is the
opposite, caused by their larger overshooting with larger u. This
is because they will select more seeds as u goes up, which causes
higher revenue (hence regret) due to more virality.
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(b) EPINIONS

Figure 5: Distribution of individual regrets (� = 0, u = 5).

We also vary � to be 0, 0.1, 0.5, and 1 and show the overall
regrets under those values in Fig. 4 (in log-scale), with two choices
1 and 5 for u. As expected, in all test cases as � increases, the
overall regret also goes up. The hierarchy of algorithms (in terms
of performance) remains the same as in Fig. 3, with TIRM being
the consistent winner. Note that even when � is as high as 1, TIRM
still wins and performs well. This suggests that the �-assumption
(�  �(u, i)·cpe(i), 8 user u and ad i) in Theorem 2 is conservative
as TIRM can still achieve relatively low regret even with large �
values.
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Figure 3: Total regret (log-scale) vs. attention bound u
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Figure 4: Total regret (log-scale) vs. �

Drilling down to individual regrets. Having compared overall re-
grets, we drill down into the budget-regrets (see §4) achieved for
different individual ads by TIRM and GREEDY-IRIE. Fig. 5 shows
the distribution of budget-regrets across advertisers for both al-
gorithms. On FLIXSTER, both algorithms overshoot for all ads,
but the distribution of TIRM-regrets is much more uniform than
that of GREEDY-IRIE-regrets. E.g., for the fourth ad, GREEDY-
IRIE even achieves a smaller regret than TIRM, but for all other
ads, their GREEDY-IRIE-regret is at least 3.8 times as large as the
TIRM-regret, showing a heavy skew. On EPINIONS, TIRM slightly
overshoots for all advertisers as in the case of FLIXSTER, while
GREEDY-IRIE falls short on 7 out of 10 ads and its budget-regrets
are larger than TIRM for most advertisers. Note that MYOPIC
and MYOPIC+ are not included here as Figs. 3 and 4 have clearly
demonstrated that they have significantly higher overshooting5.

Number of targeted users. We now look into the distinct number
of nodes targeted at least once by each algorithm, as u increases
from 1 to 5. Intuitively, as u decreases, each node becomes “less
available”, and thus we may need more distinct nodes to cover all
budgets, causing this measure to go up. The stats in Table 3 confirm
this intuition, in the case of TIRM, GREEDY-IRIE, and MYOPIC+.
MYOPIC is an exception since it allocates an ad to every user (i.e.,
all |V | nodes are targeted). Note that on EPINIONS, TIRMtargeted
more nodes than GREEDY-IRIE. The reason is that GREEDY-IRIE
tends to overestimate influence spread on EPINIONS, resulting in
pre-mature termination of Greedy. When MC is used to estimate
ground-truth spread, the revenue would fall short of budgets (see
Fig. 5). The behavior of GREEDY-IRIE is completely the opposite
on FLIXSTER, showing its lack of consistency as a pure heuristic.

6.2 Results of Scalability Experiments
We test the scalability of TIRM and GREEDY-IRIE on DBLP and

LIVEJOURNAL. For simplicity, we set all CPEs and CTPs to 1 and
� to 0, and the values of these parameters do not affect running time

5Their regrets are all from overshooting the budget on account of
ignoring virality effects.

FLIXSTER u = 1 2 3 4 5

TIRM 868 352 319 263 257
GREEDY-IRIE 3.7K 1.7K 1.5K 1237 1222

MYOPIC 29K 29K 29K 29K 29K
MYOPIC+ 27K 13K 9.6K 7.5K 6.6K
EPINIONS u = 1 2 3 4 5

TIRM 4.4K 901 396 233 175
GREEDY-IRIE 3.1K 826 393 251 183

MYOPIC 76K 76K 76K 76K 76K
MYOPIC+ 55K 28K 19K 15K 13K

Table 3: Number of nodes targeted vs. attention bounds (� = 0)

or memory usage. Influence probabilities on each edge (u, v) 2
E are computed using the Weighted-Cascade model [7]: piu,v =

1
|Nin(v)| for all ads i. We set ↵ = 0.7 for GREEDY-IRIE and " =

0.2 for TIRM, in accordance with the settings in [18,24]. Attention
bound u = 1 for all users. We emphasize that our setting is fair
and ideal for testing scalability as it simulates a fully competitive
case: all advertisers compete for the same set of influential users
(due to all ads having the same distribution over the topics) and the
attention bound is at its lowest, which in turn will “stress-test” the
algorithms by prolonging the seed selection process.

We test the running time of the algorithms in two dimensions:
Fig. 6(a) & 6(c) vary h (number of ads) with per-advertiser budgets
Bi fixed (5K for DBLP, 80K for LIVEJOURNAL), while Fig. 6(b)
& 6(d) vary Bi when fixing h = 5. Note that GREEDY-IRIE results
on LIVEJOURNAL (Fig. 6(c) & 6(d)) are excluded due to its huge
running time, details to follow.

At the outset, notice that TIRM significantly outperforms
GREEDY-IRIE in terms of running time. Furthermore, as shown in
Fig. 6(a), the gap between TIRM and GREEDY-IRIE on DBLP be-
comes larger as h increases. For example, when h = 1, both algo-
rithms finish in 60 secs, but when h = 15, TIRM is 6 times faster
than GREEDY-IRIE.

On LIVEJOURNAL, TIRM scales almost linearly w.r.t. the num-
ber of advertisers, It took about 16 minutes with h = 1 (47 seeds
chosen) and 5 hours with h = 20 (4649 seeds). GREEDY-IRIE
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Figure 6: Running time of TIRM and GREEDY-IRIE on DBLP and LIVEJOURNAL

DBLP h = 1 5 10 15 20

TIRM 2.59 12.6 27.1 40.6 60.8
GREEDY-IRIE 0.16 0.30 0.48 0.54 0.84

LIVEJOURNAL h = 1 5 10 15 20

TIRM 3.72 15.6 32.5 47.7 60.9

Table 4: Memory usage (GB)

took about 6 hours to complete for h = 1, and did not finish after
48 hours for h � 5. When budgets increase (Fig. 6(b)), GREEDY-
IRIE’s time will go up (super-linearly) due to more iterations of
seed selections, but TIRM remains relatively stable (barring some
minor fluctuations). On LIVEJOURNAL, TIRM took less than 75
minutes with Bi = 50K (254 seeds). Note that once h is fixed,
TIRM’s running time depends heavily on the required number of
random RR-sets (✓) for each advertiser rather than budgets, as seed
selection is a linear-time operation for a given sample of RR-sets.
Thus, the relatively stable trend on Fig. 6(b) & 6(d) is due to the
subtle interplay among the variables to compute L(s, ") (Eq. 5);
similar observations were made for TIM in [24].

Table 4 shows the memory usage of TIRM and GREEDY-IRIE.
As TIRM relies on generating a large number of random RR-
sets for accurate estimation of influence spread, we observe high
memory consumption by this algorithm, similar to the TIM algo-
rithm [24]. The usage steadily increases with h. The memory usage
of GREEDY-IRIE is modest, as its computation requires merely the
input graph and probabilities. However, GREEDY-IRIE is a heuris-
tic with no guarantees, which is reflected in its relatively poor re-
gret performance compared to TIRM. Furthermore, as seen earlier,
TIRM scales significantly better than GREEDY-IRIE on all datasets.

7. CONCLUSIONS AND FUTURE WORK
In this work, we build a bridge between viral marketing and so-

cial advertising, by drawing on the viral marketing literature to
study influence-aware ad allocation for social advertising, under
real-world business model, paying attention to important practical
factors like relevance, social proof, user attention bound, and ad-
vertiser budget. In particular, we study the problem of regret min-
imization from the host perspective, characterize its hardness and
devise a simple scalable algorithm with quality guarantees w.r.t. the
total budget. Through extensive experiments we demonstrate its su-
perior performance over natural baselines.

Our work takes a first step toward enriching the framework of
social advertising by integrating it with powerful ideas from viral
marketing and making the latter more applicable to real online mar-
keting problems. It opens up several interesting avenues for further
research. Studying continuous-time propagation models, possibly
with the network and/or influence probabilities not known before-
hand (and to be learned), and possibly in presence of hard compe-

tition constraints, is a direction that offers a wealth of possibilities
for future work.
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