
An Efficient Similarity Search Framework for SimRank
over Large Dynamic Graphs

Yingxia Shao♯ Bin Cui♯ Lei Chen§ Mingming Liu♯ Xing Xie♮

♯Key Lab of High Confidence Software Technologies (MOE), School of EECS, Peking University
§Department of Computer Science and Engineering, HKUST

♮Microsoft Research
♯{simon0227, bin.cui, minglotus}@pku.edu.cn

§leichen@cse.ust.hk ♮xingx@microsoft.com

ABSTRACT

SimRank is an important measure of vertex-pair similarity accord-

ing to the structure of graphs. The similarity search based on Sim-

Rank is an important operation for identifying similar vertices in a

graph and has been employed in many data analysis applications.

Nowadays, graphs in the real world become much larger and more

dynamic. The existing solutions for similarity search are expen-

sive in terms of time and space cost. None of them can efficiently

support similarity search over large dynamic graphs. In this paper,

we propose a novel two-stage random-walk sampling framework

(TSF) for SimRank-based similarity search (e.g., top-k search). In

the preprocessing stage, TSF samples a set of one-way graphs to

index raw random walks in a novel manner within O(NRg) time

and space, where N is the number of vertices and Rg is the number

of one-way graphs. The one-way graph can be efficiently updated

in accordance with the graph modification, thus TSF is well suited

to dynamic graphs. During the query stage, TSF can search simi-

lar vertices fast by naturally pruning unqualified vertices based on

the connectivity of one-way graphs. Furthermore, with additional

Rq samples, TSF can estimate the SimRank score with probabil-

ity 1 − 2e
−2ǫ2

RgRq

(1−c)2 if the error of approximation is bounded by

1 − ǫ. Finally, to guarantee the scalability of TSF, the one-way

graphs can also be compactly stored on the disk when the memory

is limited. Extensive experiments have demonstrated that TSF can

handle dynamic billion-edge graphs with high performance.

1. INTRODUCTION
SimRank [14] is a general link-based similarity measure. Its def-

inition is inspired by the observation that is “objects related to sim-

ilar objects are also similar”. The similarity scores of objects are

computed based on the objects’ structural context which is mod-

eled as a directed graph. SimRank has been successfully employed

in many data analysis applications, such as sponsored search [1],

web spam detection [5], schema matching [22] and many other web

applications [25, 31, 8]. Among these applications, a common op-

eration is top-k similarity search which is defined as follows.

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivs 3.0 Unported License. To view a copy of this li­
cense, visit http://creativecommons.org/licenses/by­nc­nd/3.0/. Obtain per­
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st ­ September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 8
Copyright 2015 VLDB Endowment 2150­8097/15/04.

• Problem Definition (Top-k search): given a query vertex v

of a graph G and the number of similar vertices k, top-k

search finds k vertices with the highest SimRank scores with

respect to query vertex v in the graph G. This type of search

is denoted by q(v, k).
A straightforward approach for the top-k search is first comput-

ing the SimRank scores of all-pairs off-line by using available solu-

tions of SimRank computation, then ranking the scores with respect

to the query vertex, and lastly outputting the top-k vertices. This

approach is extremely fast for online querying. However, the com-

putation of SimRank scores of all-pairs is prohibitively expensive

in terms of both time and space costs. For example, the solution of

computing SimRank scores in [21] costs O(N3) time and O(N2)
space. As a consequence, the straightforward approach cannot pro-

cess large graphs.

Since the order of vertices, not the exact SimRank scores, really

matters in the top-k search, many researches resort to compute the

approximate scores to improve the performance and capability of

solutions. One good strategy is derived from the matrix formula

of SimRank. Several approximation algorithms [18, 10] use low-

rank approximation techniques [23] (e.g., Singular Value Decom-

position) to approximately represent the original matrix by several

low-rank matrices, then top-k search can be completed in linear

time. However, to obtain the low-rank representation, it requires

quadratic time [18]. These algorithms incur expensive preprocess-

ing costs when handling large graphs.

A more promising solution for similarity search on large-scale

graphs is to design approximation algorithms based on the random

surfer-pairs model. In the model, a single-pair SimRank score is in-

terpreted as the expected first-meeting time of two random surfers.

Fogaras and Rácz [9] adopted Monte-Carlo simulation technique to

estimate first-meeting time through sampling random walks. The

estimated values are indexed by a data structure called a “finger-

print”. The fingerprints can be built in O(NR) time, where R is

the number of samples; then top-k search is efficiently executed

based on the fingerprints. Most recently, Kusumoto et al. [15]

developed another random-walk based algorithm. The algorithm

computes upper bounds for each vertex’s SimRank score through

random-walk sampling in O(NRT) time, where T is the length of

a random walk, and then uses the bound to filter unqualified ver-

tices for speeding up query processing. Both random-walk based

approaches are able to handle large graphs since the preprocessing

and query execution can be completed in linear time.

On the other hand, graph structure evolution is a typical charac-

teristic in the real world graph applications. Recent decades have

witnessed the rapid emergence of large dynamic graphs in various

areas, hence the similarity search on large dynamic graphs becomes

838

important. However, the existing solutions [18, 29] for dynamic

graphs are based on all-pairs SimRank scores so that they cannot

process large dynamic graphs. Furthermore, the aforementioned

random-walk based solutions cannot handle dynamic graphs effi-

ciently either. The reason is that the indexes (i.e., fingerprints and

bounds) are built by aggregating some properties from the sampled

random walks, and they requires to be reconstructed from scratch

when the original graph is (even slightly) modified. Due to the ex-

pensive cost of rebuilding, similarity search fails to be aware of the

graph modifications immediately. Taking the twitter graph dataset

as an example, Kusumoto’s solution [15] takes about 7.7 hours to

build the index. Thus the search results only reflect the structure of

graph at least 7.7 hours ago, and cannot meet the real-time analysis

requirements. In summary, none of existing solutions can perfectly

support similarity search on large dynamic graphs.

To efficiently solve top-k search on both static and dynamic graphs,

we propose a novel two-stage random-walk sampling framework

(TSF). TSF organizes raw random walks in a novel fashion; it in-

dexes the walks by one-way graphs in O(NRg) time and space,

where Rg is the number of one-way graphs. The one-way graph
is a special subgraph of the reversed original graph and contains

exactly one random walk for each vertex. For a given top-k search

query q(u, k), TSF first samples Rq new random walks for vertex

u, then searches the similar vertices based on Rq random walks and

Rg one-way graphs in O(RqRgT
2) time, where T is the length of

a random walk. The high performance of query stage is guaran-

teed by the property of one-way graph’s connectivity, which helps

prune unqualified vertices without any cost overhead, and an ap-

proximation random model, which speeds up the similarity estima-

tion. Further, with the additional Rq samples, TSF can estimate the

SimRank score with probability 1 − 2e
−2ǫ2

RgRq

(1−c)2 when the error

of approximation is bounded by 1− ǫ.

Unlike other random-walk based approaches, TSF is also well

suited to the dynamic graph scenario. This is because raw ran-

dom walks are directly indexed in one-way graphs, and the one-way

graph can be locally updated when the original graph is changed.

In practice, we implement the update semantics via a simple but

efficient log-based approach. Finally, to guarantee the scalability

of TSF, the one-way graphs can further be compactly stored on the

disk when the memory is limited.

To summarize, we have made the following contributions.

• We propose an approximation random surfer-pairs model to

speed up the SimRank score estimation.

• We propose a novel two-stage random-walk sampling frame-

work for SimRank-based similarity search, called TSF.

• We introduce the one-way graph to directly and compactly

encode a set of random walks in TSF.

• We extend our solution onto dynamic graphs by efficiently

updating one-way graph with a log-based approach.

• We design an external storage format for one-way graphs

to support similarity search on large-scale graphs when the

available memory is limited.

Organization. We introduce the background material in the next

section. The details of TSF and top-k similarity search are elabo-

rated in Section 3. The miscellaneous features of TSF are described

in Section 4. The results of experimental evaluation are presented

in Section 5. Finally, we present the related work and conclude this

paper in Section 6 and Section 7.

2. BACKGROUND
Here we review key concepts of SimRank and the basic Monte-

Carlo based approach for estimating SimRank scores. In this paper,

a directed graph is denoted by G = (V,E), where V is the vertex

set and E is the directed edge set. The reversed G is denoted by

Gr , which uses the same vertex set V with all of the edges reversed

compared to the orientation of corresponding edges in G.

2.1 SimRank
SimRank, proposed by Jeh and Windom [14], is a domain inde-

pendent similarity measure and is computed on a directed graph G

which models objects as vertices and relationships as edges. Ac-

cording to the intuitive observation mentioned in Section 1, the

SimRank score iteratively aggregates the similarity from incoming

neighbor pairs. Let s(u, v) denote the similarity between vertices

u and v (u, v ∈ V), then it can be written as

s(u, v) =







1 if u = v;
c

|NI(u)||NI(v)|

∑

u′∈NI(u)

∑

v′∈NI(v)

s(u′, v′) if u 6= v.

where c ∈ (0, 1) is the decay factor and NI(u) represents the in-

coming neighbors of vertex u. Table 1 lists the notations frequently

used in this paper.

Symbols Description

G, Gr a directed graph and the reversed one

N the number of vertices

NO(u)
NI(u)

the outgoing / incoming neighbors
of vertex u

s(u, v), sa(u, v) similarity of a vertex pair (u, v)
R
Rg

Rq

the number of samples
the number of one-way graphs in TSF
the number of samples at query time in TSF

T the number of iterations/steps

Wv, wv(v0, ..., vk)
a random walk that starting from
vertex v0(= v) with k steps

Gowg, Growg a one-way graph and the reversed one

Table 1: Notations

Jeh and Windom further proposed a random surfer-pairs model

to interpret the s(u, v) as the expected first-meeting time of two

random surfers who respectively start from vertices u and v in the

reversed graph Gr [14]. Let T be the length of a random walk and

Iw be the initial similarity of a single vertex w, according to the

random surfer-pairs model s(u, v) can be rewritten as

s(u, v) =
T
∑

t=1

∑

w∈V

pft(u, v, w)ctIw, (1)

where pft(u, v, w) is the first-meeting probability that both random

surfers u and v reach w at time t. Usually Iw is one.

2.2 Monte­Carlo Based Estimation
Equation 1 expresses s(u, v) as the expected value which is re-

lated to the first-meeting vertices between random walks. The com-

putation of exact s(u, v) is expensive, since we need to enumerate

all the random walks. Monte-Carlo simulation [24] is a general

process to efficiently estimate a numerical value by random sam-

pling. Here an approximation SimRank score can be computed by

sampling random walks for each related vertex. The procedure of

Monte-Carlo based estimation is listed in Algorithm 1.

To estimate s(u, v), the algorithm conducts R random samples.

In each sample, two random walks Wui and Wvi are sampled start-

ing from vertices u and v in Gr, then the delta SimRank score δu,v
is computed by finding the first-meeting vertex between Wui and

Wvi (Line 5), finally it finishes this sample by increasing s(u, v)

839

Algorithm 1 Basic Monte-Carlo based estimation of s(u, v)

Input: reversed graph Gr , vertices u, v
Output: s(u, v)
1: s(u, v)← 0;
2: for i← 0 to R− 1 do
3: sample a Wui=wu(u0, u1, ..., uT) from Gr ;
4: sample a Wvi=wv(v0, v1, ..., vT) from Gr ;
5: δu,v = ct, t = min{t|ut = vt, 1 ≤ t ≤ T}
6: s(u, v)← s(u, v) + δu,v ;
7: end for
8: return

s(u,v)
R

;

with δu,v . Theorem 1 guarantees the accuracy of estimated Sim-

Rank score with respect to the number of samples.

THEOREM 1. Let s′(u, v) be the estimated score based on Al-

gorithm 1 and s(u, v) is the exact score, then

Pr{|s′(u, v)− s(u, v)| > ǫ} ≤ 2e
−2ǫ2 R

(B−c)2 ,

where ǫ is the error bound and B is min{1, c
1−c

}.

PROOF. The random variable δu,v is in the range [c,min{1, c
1−c

}]
under the random surfer-pairs model. According to the Hoeffding’s

inequality [13], the result can be derived.

Similar to other random-walk based solutions [9, 15] for simi-

larity search, the Monte-Carlo simulation is the basic technique in

TSF as well.

3. A NOVEL FRAMEWORK FOR SIMRANK

BASED SIMILARITY SEARCH
For the random-walk based SimRank estimation, the essence

is to sample a set of random walks and find the meeting vertices

among them. Our novel framework directly maintains a set of raw

random walks for each vertex and computes the meeting vertices

online efficiently. Through indexing the raw random walks, the

new solution can handle dynamic graphs with high performance as

well, which will be presented in Section 4. However the straightfor-

ward method for storing random walks consumes a large amount of

memory, so we further design a special graph, one-way graph, to

compactly maintain random walks. On top of the one-way graph,

the top-k similarity search can be efficiently executed.

In the following subsections, we first introduce the novel Sim-

Rank estimation framework, which is called two-stage random-

walk sampling framework. Then we present the basic concepts and

properties of one-way graph. To reduce the cost of finding meeting

vertices, we introduce an approximation random surfer-pairs model

followed by the details of top-k similarity search based on the one-

way graph. In the end, we analyze the error of approximation in

TSF.

3.1 Overview of TSF
Two-stage random-walk sampling framework (TSF for short) is

a new Monte-Carlo based approach for SimRank estimation. The

core idea of TSF is to maintain a set of random walks for each ver-

tex. These walks approximately represent each vertex’s complete

random-walk tree (Figure 2). At query time, TSF estimates Sim-

Rank via the indexed walks and a lot of redundant sampling can be

avoided. Moreover, the indexed raw random walks can be updated

efficiently when the original graph is modified.

Specifically, TSF applies the random-walk sampling technique

in two stages, the preprocessing stage and query processing stage.

The details of the two stages are as follows.

Preprocessing stage. In this stage, TSF aims at sampling R

random walks for each vertex to represent the vertex’s complete

Algorithm 2 Estimation of s(u, v) in TSF

Input: reversed graph Gr , vertex pair u,v
Output: s(u, v)
1: for i← 0 to Rg − 1 do

2: Gi
owg ← load the ith one-way graph;

3: wv(v0, v1, ..., vT)← retrieve vertex v’s random walk from Gi
owg

with T steps;
4: for j ← 0 to Rq − 1 do
5: ue ← u
6: for t← 1 to T do
7: ue ← randomly select a vertex from NO(ue) in Gr

8: /*Approximation Random Model*/
9: if ue = vt then

10: s(u, v)← s(u, v) + ct

11: end if
12: end for
13: end for
14: end for
15: return

s(u,v)
RgRq

random-walk tree. However, it is expensive in both time and space

if we generate and store all vertices’ random walks separately. For

instance, assuming a directed graph contains N vertices and each

vertex samples R random walks of T steps, the total space cost will

be O(NTR). In TSF, we use one-way graph, a novel compact

data structure, as index. Instead of sampling random walks sepa-

rately, TSF randomly samples R one-way graphs, where each graph

compactly contains N coupled random walks and exactly one ran-

dom walk for each vertex. The number of sampled one-way graphs

is denoted by Rg and the details of one-way graph are described in

the next subsection.

Query processing stage. Due to the compression of one-way

graph, the random walks of different vertices in a one-way graph

are coupled and dependent (refer to the sampling process of one-

way graph in Section 3.2). To avoid the influence of this depen-

dence and improve the accuracy of estimation, at query time in

TSF, two query vertices u and v of a single pair are processed un-

equally. One vertex v simply uses the indexed random walks from

one-way graphs while the other one u resamples some new random

walks from the reversed graph Gr . For each random walk of vertex

v, we sample Rq new random walks of vertex u to find the meet-

ing vertices. The extra Rq samples help improve the accuracy of

estimation. Moreover, sampling extra Rq random walks is an indis-

pensable operation for top-k similarity search and helps distinguish

close vertices more explicitly. The detailed approximation error of

TSF will be described in Section 3.5.

Algorithm 2 illustrates the detailed procedure of the query pro-

cessing stage. At the beginning, TSF retrieves random walks of

vertex v from Rg one-way graphs (Lines 2-3). For each random

walk of vertex v, TSF samples Rq random walks for the other ver-

tex u (Lines 4-13). TSF estimates the SimRank score s(u, v) based

on vertex v’s indexed random walks and vertex u’s newly sampled

random walks by detecting the meeting vertices. To efficiently find

all the meeting vertices at the same time, we further introduce an

approximation random surfer-pairs model (Section 3.3).

3.2 One­Way Graph
In TSF, a one-way graph should contain a random walk for every

vertex of the reversed graph Gr . The one-way graph is actually

a graph satisfying the one out-degree restriction, which means each

vertex has at most one outgoing edge. Figure 1(b) shows a one-way

graph sampled from Figure 1(a). Given the one out-degree restric-

tion, it easily figures out that each vertex has exactly one random

walk which starts from that vertex. Therefore we can uniformly

840

3

5

1

2
4 6

(a) a reversed graph Gr

3

5

1

2
4 6

(b) a sampled one-way graph

Figure 1: An illustration of a Gr and a one-way graph.

sample one-way graphs instead of sampling random walks sepa-

rately.

To sample a one-way graph, each vertex in the reversed graph

randomly selects an outgoing edge from its neighbors and the N

such edges compose a one-way graph. Through repeating above

procedure Rg times, we can get Rg sampled one-way graphs, thus

each vertex of Gr has Rg random walks. The procedure of building

one-way graphs is described in Algorithm 3. The total time com-

plexity of preprocessing is O(NRg) and the space complexity is

O(NRg) as well.

Properties of one­way graph

Here we first introduce two properties related to the weakly con-

nected component (WCC) in the one-way graph. Then the charac-

teristics of random walks in a one-way graph are discussed.

Graphs #WCC WMS
N

WMS

livejournal 607,126 38,757 125.08

it-2004 5,044,878 29,664 1391.95

wikipedia 15,987,009 134,537 192.83

twitter 6,513,092 3,610,459 11.54

Table 2: Average number of WCC and average maximum WCC size

(WMS) from ten sampled one-way graphs in four real-world graphs

are listed. The last column shows the ratio between the size of graph

and WMS .

Table 2 shows the statistics of weakly connected component of

one-way graphs in four real-world graphs. It clearly shows that a

one-way graph sampled from a real-world power-law graph con-

sists of many weakly connected components. In twitter dataset, a

one-way graph contains average 6,513,092 weakly connected com-

ponents, and the average maximum size of WCC is around 3,610,459

which is an order smaller than the size of graph. This phenomenon

concludes Property 1 and the property helps TSF filter unqualified

vertices without any overhead (Section 3.4).

PROPERTY 1. A one-way graph sampled from a real-world power-

law graph is highly disconnected.

Furthermore, considering the one out-degree restriction, the weakly

connected component of a one-way graph also has Property 2.

PROPERTY 2. For each weakly connected component in a one-

way graph, there exists at most one cycle.

Figure 1(b) is a weakly connected component with cycle con-

sisting of vertices 1, 4 and 6. The cycle in a weakly connected

component will incur dependence for a single random walk when

the walk visits the same vertex more than once. However, in the

SimRank estimation situation, this dependence has little influence

on the results.

First, when a random walk obtained from a one-way graph did

not visit any same vertex more than once, Lemma 1 guarantees that

the walk is a randomly sampled walk in the reversed graph Gr and

the walk is true independent.

LEMMA 1. Given a walk wv1(v1, v2, ..., vk, vk+1) of a one-

way graph, if ∀vi, vj , i 6= j, 1 ≤ i, j ≤ k + 1, vi 6= vj holds,

then the marginal probability of the walk is

Algorithm 3 Sampling one-way graphs (indexing)

Input: reversed graph Gr

1: for i← 0 to Rg − 1 do
2: Gi

owg ← Empty;

3: for v ∈ Gr do
4: vr ← randomly select a vertex from NO(v) in Gr;
5: Gi

owg .insertEdge(v, vr);

6: end for
7: store Gi

owg ;

8: end for

p(wv1(v1, v2, ..., vk, vk+1)) =
k

∑

i=1

1

|NO(vk)|
.

PROOF. According to the one-way graph indexing process, where

each vertex independently samples an outgoing edge from its neigh-

bors, the marginal probability can be inferred directly.

Second, let L be the length of a cycle in a weakly connected

component and T be the length of a random walk required for Sim-

Rank estimation. If L is larger than T , each random walk in a

one-way graph will not visit the same vertex more than once and

they are true independent by Lemma 1. If L is smaller than T ,

some random walks are affected by the cycle. On basis of Prop-

erty 2, only one cycle exists in a WCC. So in the worst case, at

most L+L ∗ (T −L− 1) vertices have random walks influenced

by the cycle. However, in the SimRank computation, T is usually

small (∼10) [14, 21, 9, 15], therefore only a few vertices (50∼60)

are influenced. The influence is further reduced by resampling Rq

new random walks for one vertex at query time. In summary, the

dependence caused by the cycle is negligible for the SimRank esti-

mation in TSF.

According to the above discussion, it is reasonable to assume a

random walk of a one-way graph is independent in TSF. The re-

mained analysis in this paper is based on this assumption.

3.3 Approximation Random Model

4

31

6 1

6

4 5

3311 4

(a) start from vertex 4

6

41

6 1

6

3

5411 4

(b) start from vertex 6

Figure 2: Two random-walk trees within three steps in the reversed

graph Gr .

In the random surfer-pairs model, all the possible random walks

traversed by a random surfer u over Gr form a random-walk tree

whose root is u. Figure 2 shows two random-walk trees within

three steps. To (approximately) compute SimRank score, random-

walk based solutions always enumerate or sample random walks

from the tree, calculate the probability and find the first-meeting

vertices between random walks. However, it is expensive to find

the first-meeting vertices among multiple random walks simulta-

neously because all the walks need to be stored [20]. Therefore,

we propose an approximation random surfer-pairs model which re-

laxes the constraints on meeting vertices. From now on, the ap-

proximation random model is short for the approximation ran-

dom surfer-pairs model, and the classic random model refers to

the original random surfer-pairs model.

The approximation random model no longer requires the first-

meeting condition. This means two random surfers can meet more

841

than once on their walks. For two walks w4(4, 3, 1, 6) and w6(6, 4, 1, 6)
in Figure 2, only meeting vertex 1 counts in the classic random

model while both meeting vertices 1 and 6 are considered in the

approximation random model. Without the first-meeting constraint,

the meeting vertices can be efficiently detected. The approximation

random model is formalized as follows,

sa(u, v) =
T∑

t=1

∑

w∈V

pt(u, w)pt(v, w)ctIw, (2)

where pt(u,w) is the probability that random surfer u reaches ver-

tex w after t steps.

Comparison of approximation and classic models

Theorem 2 shows that the SimRank score in the approximation

random model is larger than the one in the classic random model,

but the difference is bounded and will not be larger than c
1−c

Imax

Imin

times of s(u, v). The bound is estimated under the worst case as-

sumption and is hardly reached for the real-world datasets in aver-

age. Moreover, both the upper bound (1 + c
1−c

Imax

Imin
)s(u, v) and

Equation 3 imply that the larger s(u, v) the larger sa(u, v). This

observation helps distinguish some close SimRank scores more ex-

plicitly in the approximation random model.

THEOREM 2. Assuming sa(u, v) and s(u, v) are the SimRank

scores of a single vertex pair (u, v) in the approximation random

model and the classic random model respectively, we have

0 ≤ sa(u, v)− s(u, v) ≤
c

1− c

Imax

Imin
s(u, v),

where Imax = max
w∈V

{Iw} and Imin = min
w∈V

{Iw}.

PROOF. Let sft(u, v, w) be the score of two random surfers,

who start from vertices u and v respectively, first meeting at ver-

tex w with t steps, i.e., sft(u, v, w) = pft(u, v, w)ctIw. In the

approximation random model, after first meeting at vertex w, the

surfers u and v will contribute extra similarity score δT ′(w), where

T ′ is T − t. δT ′(w) is as follows,

δT ′(w) =
sft(u, v, w)

Iw

T ′

∑

i=1

c
i
∑

x∈V

p
2
i (w, x)Ix. (3)

The total extra similarity of a single pair (u, v) in the approxi-

mation random model is

sa(u, v)− s(u, v) = ∆(u, v) =
∑

t≤T ;w∈V

δT−t(w).

First, ∆(u, v) ≥ 0 because of δT−t(w) ≥ 0.

Second, because
∑

x∈V

p
2
i (w, x) ≤ 1, we have

δT−t(w) ≤
sft(u, v, w)

Imin

T−t
∑

i=1

c
i
Imax ≤

c

1− c

Imax

Imin
sft(u, v, w).

Finally,

∆(u, v) ≤
∑

t≤T ;w∈V

c

1− c

Imax

Imin

sft(u, v, w)

=
c

1− c

Imax

Imin

s(u, v).

Algorithm 4 Top-k similarity search in TSF

Input: reversed graph Gr , q(v, k)
Output: k vertices with the highest SimRank scores
1: for i← 0 to Rg − 1 do

2: Gi
rowg ← load the reversed version of ith one-way graph;

3: /*tsMap is a map to record possible meeting vertices, where key is
the vertex id and value is a list of meeting times (tsList).*/

4: tsMap← Empty;
5: sArray← 0 // store the SimRank score for each vertex
6: for j ← 0 to Rq − 1 do
7: ue ← v
8: for t← 1 to T do
9: ue ← randomly select a vertex from NO(ue) in Gr .

10: tsListue ← tsMap[ue]
11: tsListue .add(t) //merge meeting time
12: end for
13: end for
14: for w ∈ tsMap.keySet() do
15: updateSimRank(Gi

rowg , w, tsListw , sArray)

16: end for
17: end for
18: return top-k vertices in sArray

1: updateSimRank method
2: /*traverse Gi

rowg starting from w*/

3: t← 0
4: queue← w
5: sort tsListw in ascending order
6: while t < T do
7: t← t+ 1
8: newQueue← expanding all vertices in queue one step
9: if t exists in tsListw then

10: for vertex u in newQueue do
11: sArray[u]← sArray[u] + ct

12: end for
13: end if
14: queue← newQueue
15: end while

3.4 Efficient Top­k Similarity Search
A simple approach of running top-k search query q(v, k) in TSF

is using Algorithm 2 as a basic procedure and iteratively calling the

procedure to estimate N vertex pairs. The simple approach entails

O(NRqRgT) time to execute a top-k search query and is really

inefficient.

The properties of one-way graph open up opportunities to op-

timize the search algorithm. First, because of the one out-degree

restriction, random walks of different starting vertices are highly

overlapped in a single one-way graph. Thus we can compute differ-

ent similarity pairs together instead of computing them separately.

Second, if s(v, u) wants to have a non-zero similarity gain from a

one-way graph, vertex u, which uses the random walk in the one-

way graph, and the meeting vertex must be in the same WCC of

the one-way graph. According to Property 1, a one-way graph is

highly disconnected in real-world graphs. Thus the connectivity

of one-way graph can help the search algorithm prune unqualified

vertices naturally and efficiently.

Based on above two observations, the new top-k search algo-

rithm utilizes the connectivity of a one-way graph to efficiently

compute SimRank scores of different vertex pairs in a single traver-

sal. The algorithm first extracts the possible meeting vertices from

Rq sampled random walks of query vertex v. Then for each pos-

sible meeting vertex w, it traverses on the reversed one-way graph

to find other vertices u who meet with query vertex v at vertex w.

Because of the traversal, vertices u and w are restricted in the same

WCC, and the search algorithm successfully prunes the unquali-

fied vertex pairs which are not in the same WCC with w. Finally,

it increases SimRank scores of each vertex u. Note that, a meeting

842

vertex with different meeting times from the Rq random walks can

be efficiently processed in a single traverse as well. This is because

there is no constraints on the meeting vertices in the approximation

random model.

The details of top-k search procedure in TSF are illustrated by

Algorithm 4. Figure 3 shows a concrete example which runs q(4, 2)
(i.e., v = 4, k = 2) on the Gr of Figure 1(a) with setting Rg = 1,

Rq = 2 and T = 2. The one sampled one-way graph is shown

in Figure 1(b) and the reversed one is shown in Figure 3. The al-

gorithm first samples two random walks with two steps from Gr ,

W4(4, 3, 1) and W4(4, 1, 6), and records possible meeting vertices

1, 3, 6 in tsMap (Lines 6-13). In the tsMap, each meeting vertex

is associated with its all possible meeting times, like vertex 1 can be

met at times 1 or 2 based on the two sampled random walks. Next,

each possible meeting vertex w traverses on the reversed one-way

graph to find the valid vertex u that meets with the query vertex

v(= 4) at the possible meeting vertex w (Lines 14-16). Figure 3

illustrates the traversal of possible meeting vertex 1. We find ver-

tices 2,3,5,6 are all the valid vertices for u. Finally, we increase

the corresponding vertices’ SimRank scores based on the meeting

time. For example, vertex 4 and vertex 6 meet at vertex 1 at time 2,

so s(4, 6) is increased by c2.

3

5

1

2
4 6

w4(4,3,1)

w4(4,1,6)

t=0

t=1

t=1

t=1 t=2

t=2

Settings

Rg 1

Rq 2

T 2

tsMap

1 {1,2}

3 {1}

6 {2}

Query

q(4,2) Reversed Gowg

c 2,3

c2 5,6

u

Figure 3: An example of top-k search

Complexity analysis. The top-k search in TSF is very efficient.

Theorem 3 shows that TSF can averagely estimate N -pairs Sim-

Rank scores in O(RqRgT
2) time which is independent of the size

of graph.

THEOREM 3. In TSF, the average computation time of estimat-

ing N -pairs SimRank scores for a top-k search query is bounded

by O(RqRgT
2). The query time is bounded by O(RqRgT

2 +
Nlog(k)).

PROOF. First, let’s analyze the cost of updateSimRank method.

The method traverses over a reversed one-way graph within T steps.

Assume the average out-degree in the reversed one-way graph is d̄,

then the total number of visited vertices is

i=T
∑

i=1

d̄
i
. Based on the

one out-degree restriction of one-way graph, we know that d̄ = 1.

Therefore, the cost of updateSimRank method is O(T).
For each single one-way graph, the algorithm takes O(RqT)

times to sample Rq random walks and generate tsMap. In the

worst case, tsMap contains RqT different vertices, thus the up-

dateSimRank will be called at most RqT times. So the cost of

processing a single one-way graph is O(RqT
2).

Therefore, the total cost of computing N -pairs SimRank socres

is O(RgRqT
2). Finally, it entails extra O(Nlog(k)) time to find

the top k vertices based the SimRank scores. The query is finished

in O(RqRgT
2 +Nlog(k)) time.

3.5 Error of Approximation
In TSF, parameters Rg and Rq have crucial influences on the per-

formance. The size of index, the preprocessing time and the query

time are all linear to these two parameters. We next formally ana-

lyze the Rg and Rq needed for a given approximation error bound.

The theorems show that small Rg and Rq are sufficient to achieve

a reasonable accuracy. Furthermore, Rg determines the global ap-

proximation bound while Rq helps improve the accuracy further

only with a slight overhead.

TSF involves two stages of random-walk sampling. In the fol-

lowing analysis, the sampling in the preprocessing stage is called

first-stage sampling while the one in the query stage is second-stage

sampling.

Let sb(u, v) be the most accurate similarity which can be ob-

tained from a given set of one-way graphs. Once the index (one-

way graphs) is built in the preprocessing stage, the sb(u, v) is de-

termined as well. Let φu,v(Rg) be the difference between sb(u, v)
and s(u, v), i.e., φu,v(Rg) = s(u, v) − sb(u, v). Then φu,v(Rg)
is the best approximation error. It bounds the accuracy of query

processing. We call φu,v(Rg) the global accuracy.

THEOREM 4. For a given error bound ǫ, the probability that

global accuracy φu,v(Rg) exceeds ǫ is bounded as follows.

Pr{|φu,v(Rg)| > ǫ} ≤ 2e
−2ǫ2

Rg

(1−c)2 .

PROOF. Suppose Xi is the estimated delta SimRank score brought

by the random walk Wui in ith one-way graph. The most accurate

Xi can be calculated by finding all the meeting vertices between

Wui and the complete random-walk tree of vertex v. The random

variable Xi is still limited by range [c, 1]. Therefore, the above

inequality can be derived via Hoeffding’s inequality.

Theorem 4 shows the probability that |φu,v(Rg)| exceeds ǫ is

bounded. Increasing Rg helps enhance the global accuracy. The

global accuracy is only related to the first-stage sampling, and the

preprocessing determines the global accuracy of the SimRank score

estimation.

As mentioned before, the computation of sb(u, v) depends on

the complete random-walk tree of vertex v. Thereupon, in order

to approximate the global accuracy bound, we bring in the second-

stage sampling which is responsible for sampling random walks

from the vertex v’s random walk tree. Theorem 5 guarantees we

can achieve better approximation by simply increasing Rq, but it

cannot get the accurate result even if increasing Rq to the positive

infinity since φu,v(Rg) is not influenced by Rq .

THEOREM 5. Let s
,
b(u, v) be the estimated sb(u, v), then

Pr{|s,b(u, v)− s(u, v) + φu,v(Rg)| > ǫ} ≤ 2e
−2ǫ2

RgRq

(1−c)2

PROOF. Assume that random variable Xij (1 ≤ i ≤ Rg ; 1 ≤
j ≤ Rq) is the SimRank score computed between vertex u’s ith

random walk and vertex v’s jth random walk which is sampled

during processing the ith one-way graph, and Xij ∈ [c, 1], then

s
,
b(u, v) =

Rg
∑

i=1

Rq
∑

j=1

Xij .

According to Hoeffding’s inequality

Pr{|s,b(u, v)− sb(u, v)| > ǫ} ≤ 2e
−2ǫ2

RgRq

(1−c)2 . (4)

Finally, the result can be derived by replacing sb(u, v) = s(u, v)−
φu,v(Rg).

843

Based on Theorem 5, increasing Rq helps improve the accuracy

of top-k search. In one-way graphs, random walks of different ver-

tices are highly coupled, therefore many vertices have close Sim-

Rank score when Rq is small. With the increasing of Rq , each

vertex has a more accurate estimation and distinguishes itself from

others. A large Rq but still much smaller than Rg can improve the

accuracy of top-k similarity search, see the experimental results in

Section 5.3.

Above two theorems are analyzed under the classic random model.

The results can be directly extended to the approximation random

model by using the range of random variable determined in Theo-

rem 2.

4. TSF ON LARGE DYNAMIC GRAPHS
One-way graph is the core component in TSF. During the query

processing, TSF will traverse one-way graphs to retrieve random

walks and find meeting vertices. The one-way graph, first of all,

should be well organized in the memory for fast traversal. So TSF

applies a simple version of CRS format1 in memory. It sorts the

directed edges in a one-way graph by their source id in ascending

order and then stores the starting position for each source id as

an index array. The process can be finished in O(N) time with

counting sort [7], because the number of edges will not be larger

than the number of vertices in a one-way graph.

Moreover, given the fact that the real-world graphs are dynamic

and large-scale, one-way graphs should be not only efficiently or-

ganized in memory, but also adaptive to the graph modification and

compactly stored on the disk when Rg one-way graphs are too large

to fit in the memory. Thereby, TSF truly has the ability to handle

large dynamic graphs.

In the following subsections, we first elaborate the updating se-

mantics on one-way graph followed by its log-based implementa-

tion, and then we discuss how to compactly store one-way graphs

on disk to save I/Os.

4.1 Semantics of One­way Graph Updating
Unlike other random-walk based solutions [9, 15], the one-way

graph in TSF can be efficiently updated when the reversed graph

Gr is modified. This benefits from two factors. First, one-way

graph directly indexes the raw random walks, so that the relation

between the one-way graph and the Gr is explicitly preserved. Sec-

ond, one-way graph is generated through independent vertex sam-

pling. As a result, whenever a vertex or an edge of Gr is modified,

only one related vertex and its neighbors need to be updated in the

one-way graph. We next explain the semantics of one-way graph

updating when an edge or a vertex is modified in the reversed graph

Gr .

Edge modification in Gr . Every time a directed edge (v, u) is

inserted into or deleted from Gr, only the changes of vertex v’s

outgoing edges in Gr affect the sampled one-way graphs. This is

because the number of outgoing edges influences the probability of

sampling. Therefore, to update the vertex v in one-way graphs, we

only need to resample an edge from the updated outgoing edges

of vertex v. The time complexity for updating Rg one-way graphs

is O(Rg). Figure 4(a) shows an example where an edge (4, 5)
is inserted into Gr . In Figure 4(b), vertex 4 in the one-way graph

resamples an edge (4, 3) from the updated outgoing edges of vertex

4 of Gr , and updates the one-way graph by deleting edge (4, 1) and

inserting edge (4, 3).

1
Compressed Row Storage (CRS),
http://netlib.org/linalg/html_templates/node91.html

3

5

1

2

4 6

(a) update Gr

3

5

1

2

4 6

(b) result of (4, 5) in-

serted in Gr

3

5

1

2

4 6

(c) result of vertex 1

deleted in Gr

Figure 4: (a) Edge (4, 5) is inserted and vertex 1 is deleted in reversed

graph Gr; (b) Edge (4, 1) is deleted and (4, 3) is inserted in the one-

way graph after vertex 4 resamples its new outgoing edge. (c) Related

vertices and edges change in the one-way graph after vertex 1 is deleted.

Vertex modification in Gr. A single vertex modification can be

divided into a series of edge modifications. When one vertex v is

modified, the overall influences can be interpreted as follows. Each

source vertex of vertex v’s incoming edges has an edge modifica-

tion and the vertex v has successive |NO(v)| edge modifications.

To update a one-way graph, all the source vertices of vertex v’s in-

coming edges require to resample outgoing edges, and vertex v is

deleted as well as its outgoing edge. We explain the above opera-

tions through an example. In Figure 4(a), when vertex 1 is deleted

in Gr , first vertex 1 and its outgoing edge (1, 6) in the one-way

graph are deleted. Then vertices 2, 3, 4, 6 resample their outgoing

edges. A possible result is illustrated in Figure 4(c) where the out-

going edge of vertex 6 remains unchanged after resampling.

4.2 Log­based Implementation
As mentioned at the beginning of this section, the static one-

way graph is organized in the CRS format. Whenever the one-

way graph is updated, it is expensive to reorganize the one-way

graph repeatedly. Therefore, we develop a log-based solution to

implement aforementioned semantics of one-way graph modifica-

tion. The core idea of log-based solution is similar to the log buffer

tree [2]. It maintains logs in memory with buffers, and reorganizes

the one-way graph through the counting sort when the number of

logs exceeds a predefined threshold.

Definition of Logs

We first define three types of logs that are used to record the modi-

fication of one-way graph.

• L(u, v): the log that vertex u has a new outgoing edge

(u, v) in a one-way graph. v is EMPTY when vertex u has

zero outgoing edge.

• L(u, DELETE): the log of deleting vertex u.

• L(u, INSERT): the log of adding a new vertex u.

Based on the definition of logs, for a one-way graph, each edge

modification corresponds to a single L(u,v). Since the vertex

in a one-way graph has exactly one outgoing edge, the L(u,v)

also implies that the existing edge (u, v′) is out of date. We do

not need additional log to delete the existing edge. In the vertex

(u) modification case, it generates a L(u, DELETE) or L(u,

INSERT) with a set of L(w,v)s where vertex w is the source

of incoming edges adhered to vertex u. In summary, the above

three logs are sufficient for recording the one-way graph update in

accordance with the graph modification.

Log Management

We proceed to discuss the organization of logs in memory. We use

a log buffer to store raw logs. Given the one out-degree restriction

in one-way graph, logs for the same vertex u can be overwritten

ahead according to the updating-time order in the log buffer. This

means the log buffer always stores the latest log for a single vertex.

Since the top-k similarity search relies on the reversed one-way

graph (updateSimRank method in Algorithm 4), we also need to

maintain the reversed logs (e.g., L(v,u) is the reversed version

844

http://netlib.org/linalg/html_templates/node91.html

Algorithm 5 Explore neighbors on a updated one-way graph

Input: vertex v, Growg , log buffer, reversed log buffer
Output: vertex v’s outgoing neighbors nSet
1: nSet← Empty
2: if L(v, DELETE) exists then
3: return nSet;
4: end if
5: nSet← retrieve neighbors of vertex v from Growg

6: nSet← nSet∪ {neighbors of vertex v in reversed log buffer}
7: for u ∈ nSet do
8: if (L(u,v’) exists and v′ 6= v) or (L(u, DELETE) exists) then
9: delete u from nSet

10: end if
11: end for

of L(u,v)). Then the updated reversed one-way graph can be

explored efficiently. We bring in a reversed log buffer to store

the reversed logs. For the reversed logs, the one outgoing degree

restriction does not exist any more. In order to logically cluster the

reversed logs related to the same vertex together, the reversed log
buffer stores the reversed logs of a vertex as a link-list.

Finally, with the help of log buffer and reversed log buffer,
TSF can explore neighbors of a vertex v on the updated reversed

one-way graph as Algorithm 5 depicts.

4.3 External Storage Format of One­way Graph
Although the memory cost of a single one-way graph is O(N),

when Rg and the size of graph increase, it is still expensive to store

all the Rg one-way graphs in a memory-limited environment. For

the twitter dataset, a single one-way graph consumes about 296MB,

but for 100 and 1000 one-way graphs, they will occupy 29GB and

290GB memory respectively.

According to the top-k similarity search algorithm, at query time,

TSF processes one-way graphs one by one. Hence TSF only needs

to load a single one-way graph into memory for computation, and

other one-way graphs can be stored on disk and loaded on demand.

In order to save I/Os, we compactly store each one-way graph on

the disk through variable-length quantity [3] and run-length encod-

ing [4]. These two techniques help compress one-way graph effi-

ciently with retaining high decompressing performance.

0

2

3 3 4 5 5 6

3 4 5 6 1

3 0 1 1 0 1

indexArray

nbrArray

degree sequence

Figure 5: In-memory representation of a reversed one-way graph

The in-memory compact format of reversed one-way graph con-

sists of two arrays, which are indexArray and nbrArray. The in-
dexArray records the starting index of a vertex’s outgoing neigh-

bors which are stored in nbrArray. Figure 5 shows the in-memory

compact format of the reversed one-way graph in Figure 3. In fact,

the indexArray can be implicitly represented by vertices’ outde-

grees.

Given the fact that real-world graph has a power-law degree dis-

tribution, the reversed one-way graph also has a power-law out-

going degree distribution. The distribution guarantees that most

vertices have a small degree and a lot of vertices have the same

degree with successive vertex id. Hence we can efficiently com-

press the indexArray through the corresponding degree sequence.

First the degree sequence is extracted from the indexArray, then

we encode the degree sequence by run-length encoding, and at last

the small numbers in run-length encoding are further compressed

by the variable-length quantity. The nbrArray is not compressed

since each element is totally different. Furthermore, the nbrArray

usually has a smaller size than the indexArray since Gr has many

zero outdegree vertices.

5. EXPERIMENTAL EVALUATION
We present the evaluation results of TSF in this section. The

advantages of TSF, such as efficient preprocessing, fast query pro-

cessing, dynamic graph supporting and external storage supporting,

are demonstrated through extensive experimental study.

5.1 Experiment Environment
The experiments are evaluated on a commodity computer which

has two Xeon(R) E5530@2.40GHz CPUs and 96GB memory. The

operation system is Ubuntu 12.04.4 LTS. All the algorithms are

implemented in C++ and compiled by g++ 4.6.3 with -O3 option.

Scale Graphs #vertex #edge

Small

ca-grqc (CG) 5,242 28,980

ca-hepth (CH) 9,877 51,971

wiki-vote (WV) 7,115 103,689

Medium

web-google (WG) 875,713 5,105,039

web-berkstan (WB) 685,230 7,600,595

dblp-2011 (DB) 986,324 6,707,236

livejournal (LJ) 4,847,571 68,993,773

Large

wikipedia (WK) 25,942,246 601,038,301

it-2004 (IT) 41,290,682 1,150,725,436

twitter (TW) 41,652,230 1,468,365,182

Table 3: Statistics of graphs used in the experiments.

Datasets. We conduct our experiments on ten real-world graphs,

whose statistics are described in Table 3. All graphs are available

on SNAP, KNOECT and LWA websites.

Baselines. We compare our proposal with three state-of-the-art

baselines which are random-walk based solutions of SimRank sim-

ilarity search. Two of the baselines are Monte-Carlo based algo-

rithms, FR algorithm [9] and KM algorithm [15]. FR algorithm,

introduced by Fogaras and Rácz, runs the similarity search based

on fingerprints. KM algorithm pre-computes similarity bounds for

speeding up query processing. The third baseline is TopSim al-

gorithm [16]. The TopSim algorithm enumerates all the random

walks with heuristically pruning the walks. The three baselines are

all in-memory solutions. In this paper, our TSF has two variants,

MEM-TSF and EXT-TSF. The MEM-TSF holds all the index in

memory while EXT-TSF stores indexes on disk and loads the index

on demand. Furthermore, the TSF uses the approximation random

model to estimate the SimRank score.

Performance metrics. We evaluate both efficiency and effec-

tiveness of different approaches in the experiments. In terms of effi-

ciency, we report the time cost of index building and query process-

ing, as well as the space cost of index. On the other hand, we use

precision and Normalized Discounted Cumulative Gain (NDCG)

as effectiveness metrics to evaluate the quality of returned top-k

vertices. The precision is defined as follows,

precision@k =
|{retrieved topk} ∩ {exact topk}|

k
,

where {retrieved topk} and {exact topk} are k vertices returned

by an approximation algorithm and the exact algorithm respec-

tively. The NDCG [18] is

NDCG@k =
1

Zk

k
∑

i=1

2si − 1

log2(i+ 1)
,

where si is the exact SimRank score of vertex at rank i and Zk is a

normalization factor to ensure the exact ranking generate NDCG@k

equals 1.

845

4 8 12 16 20 24 28 32 36 40
Rq

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

NDCG@50

Precision@50

(a) Effectiveness on wiki-vote

4 8 12 16 20 24 28 32 36 40
Rq

0.75

0.80

0.85

0.90

0.95

1.00

NDCG@50

Precision@50

(b) Effectiveness on ca-grqc

4 8 12 16 20 24 28 32 36 40
Rq

0.70

0.75

0.80

0.85

0.90

0.95

1.00

NDCG@50

Precision@50

(c) Effectiveness on ca-hepth

4 8 12 16 20 24 28 32 36 40
Rq

0

10

20

30

40

Q
u

e
ry

ti
m

e
(s

e
co

n
d

s)

TW (/one q(v,k))

IT (/ten q(v,k)s)

WK (/ten q(v,k)s)

(d) Query time

Figure 6: The performance of TSF with respect to different Rq .

SimRank KM and FR Alg. TSF

c T Iw k R Rg Rq

0.6 10 1.0 50 100 100 20

Table 4: Parameter settings.

Parameter settings. FR algorithm, KM algorithm and our TSF

are all based on Monte-Carlo sampling technique. The parameters

R and Rg are equivalent. We set Rg and R as 100, which is sug-

gested by [15]. Rq is a unique parameter of TSF and it is set to 20

by making a trade off between the effectiveness and efficiency of

TSF. All the parameters used in most of the experiments are listed

in Table 4. Some experiment-specific parameters will be presented

in the corresponding experiments.

5.2 Selection of Rq

Theorem 5 shows a larger Rq leads to a more accurate result, but

the Rq directly derived from Equation 4 for a given error bound is

still too loose. The larger Rq will also cause TSF to spend more

time on query execution. To determine a reasonable Rq , we con-

duct the following experiments.

Three small datasets, ca-grqc, ca-hepth and wiki-vote, are used

in the experiments of effectiveness evaluation, since any exact so-

lution only works well on small datasets. For each dataset, we use

the exact solution (i.e., Lizorkin’s algorithm [21]) to generate the

perfect top-k results, where the smallest SimRank score is larger

than 0.0001.

Figures 6(a), 6(b) and 6(c) illustrate the variation of precision@50

and NDCG@50 with respect to the Rq . With the increasing Rq , the

precision and NDCG are both improved. But the real improvement

is related to the characteristics of datasets. In ca-grqc and ca-hepth

datasets, when Rq is four for the top-50 query, both NDCGs are

about 98% while the precisions are 84% and 83%. This indicates

that the two datasets have many similar vertices. Furthermore, in

Figure 6(d), we show the query time of MEM-TSF for different

Rq over twitter, wikipedia and it-2004 datasets. It is easy to ob-

serve that the query time is linear to the Rq. But the overhead of

increasing Rq is dependent on the size of WCC in one-way graphs

(Table 2). The larger WCC incurs the more overhead. In twitter

datasets, changing Rq from 4 to 40, each query spends extra 28

seconds, while it only takes 4 more seconds in wikipedia for every

ten queries.

By weighing the quality against the efficiency, we choose Rq to

be 20, when Rg is 100. At this point, TSF obtains top-k vertices in

proper quality with efficient query processing.

5.3 Comparison with FR and KM Algorithms
In this subsection, we compare MEM-TSF with FR and KM

algorithms. All the three algorithms use Monte-Carlo technique

to estimate SimRank scores. The experiments demonstrate that

MEM-TSF can efficiently process billion-edge graphs. Compared

with FR and KM algorithms, MEM-TSF not only exhibits the high-

est efficiency in terms of preprocessing and querying, but also has

Graphs
MEM-TSF FR Alg. KM Alg.

Index Query Index Query Index Query

WB 4.89 0.074 30.10 0.069 64.92 0.400

WG 7.07 0.067 39.79 0.090 68.52 0.204

DB 8.27 0.091 49.59 0.096 139.43 0.187

LJ 69.22 0.48 306.79 0.58 999.39 2.69

WK 294.06 2.57 992.82 2.98 779.76 50.32

IT 519.65 3.80 2163.49 4.33 4733.67 40.46

TW 830.17 23.03 2641.32 5.32 10089.09 159.64

Table 5: The performance (seconds) of MEM-TSF, FR and KM algo-

rithms on graphs in different sizes.

a better precision and NDCG of the top-k vertices than the other

two methods.

Preprocessing efficiency. First, the results of different algo-

rithms’ preprocessing efficiency are presented. The experiments

focus on the medium and large graphs. Figures 7(a) and 7(b) show

the time ratio and space ratio of preprocessing. The ratio is com-

puted by normalizing the cost to the minimal cost on the same

dataset. The actual time for building index of three algorithms is

summarized in Table 5.

From both figures, we can clearly see that the speed of build-

ing index by TSF is constantly an order faster than KM algorithm

and five times faster than FR algorithm. On twitter dataset, TSF

only takes 830.17 seconds while KM and FR algorithms need 2.8

and 0.7 hours respectively. This is because the time complexity of

preprocessing in TSF is O(RgN) while it is around O(RNT) in

KM. Although the FR algorithm has close time complexity to TSF,

it has a much larger constant. FR algorithm spends time on extra

computation like identifying each vertex’s fingerprint id.

At the aspect of space cost, TSF has a middle performance among

the three algorithms. It occupies approximately five times larger

space than KM, but four times smaller space than FR on various

datasets. On the twitter dataset, KM generates 3.8G indexes while

the indexes of TSF are 20G. This is because KM highly aggregates

the properties from random walks while TSF directly indexes the

random walks. However, through directly indexing random walks,

TSF empowers itself to efficiently handle large dynamic graphs.

To summary, the preprocessing in TSF is efficient, and TSF is

also scalable to process graphs in different sizes.

Query efficiency. Next we evaluate the query efficiency of the

aforementioned three similarity search algorithms based on their

indexes. For each graph, we generate a set of top-50 queries. The

vertices in the queries are selected according to the in-degree dis-

tributions of the graph. More specifically, assume Qn queries need

to be generated, let Vn be the total number of non-zero in-degree

vertices and Nd is the number of vertices whose in-degree is d,

then there are around
Nd

Vn
of Qn vertices with in-degree d which

is uniformly selected from Nd vertices. The query performance is

measured by the average query time of all the queries.

Table 5 show the query performance on seven datasets. We also

present the query time ratio, which is calculated by normalizing the

time to the one of MEM-TSF, in Figure 7(c). First, all the three al-

gorithms are efficient to execute similarity search on large graphs.

846

WG WB DB LJ WK IT TW0

5

10

15

20

25

P
re

p
ro

ce
ss

in
g

T
im

e
R

a
ti

o

MEM-TSF

FR Alg.

KM Alg.

(a) Time of building index

WG WB DB LJ WK IT TW
0

5

10

15

20

25

30

In
d

e
x

S
p

a
ce

R
a
ti

o MEM-TSF

FR Alg.

KM Alg.

(b) Space of indexes

WG WB DB LJ WK IT TW0

5

10

15

20

Q
u

e
ry

T
im

e
R

a
ti

o MEM-TSF

FR Alg.

KM Alg.

(c) Performance of queries

Figure 7: Performance comparison of in-memory processing among TSF, KM and FR algorithms.

10 15 20 25 30 35 40 45 50
k

0.2

0.3

0.4

0.5

0.6

0.7

TSF

KM Alg.

FR Alg.

(a) Precision on wiki-vote

10 15 20 25 30 35 40 45 50
k

0.5

0.6

0.7

0.8

0.9

1.0

TSF

KM Alg.

FR Alg.

(b) NDCG on wiki-vote

10 15 20 25 30 35 40 45 50
k

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

TSF

KM Alg.

FR Alg.

(c) Precision on ca-hepth

10 15 20 25 30 35 40 45 50
k

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

TSF

KM Alg.

FR Alg.

(d) NDCG on ca-hepth

Figure 8: Effectiveness comparison among TSF, KM and FR algorithms.

Second, we notice that the query efficiency of FR algorithm and

MEM-TSF surpasses the KM algorithm. This is because both FR

algorithm and TSF filter the unqualified vertices by the connectivity

of indexes (one-way graphs and fingerprints), while KM algorithm

prunes vertices by several bounds which is under assumption that

the returned vertices have a high SimRank score. For the top-50
similarity search, the SimRank score of the lowest rank vertex is

small, therefore, KM algorithm loses its efficiency. On the twitter

dataset, MEM-TSF is slower than FR algorithm, where the average

query time of two algorithms are 23 seconds and 5 seconds respec-

tively. This is because twitter has a large WCC in one-way graphs

(refer to Table 2) and MEM-TSF requires an additional Rq (=20)

samples to compute on WCCs for improving the quality of results

while FR algorithm does not.

Effectiveness of TSF. Finally, we evaluate the effectiveness of

TSF by comparing to the KM and FR algorithms through running

top-k queries with different k. The experimental results show that

TSF has a better precision and NDCG than the KM and FR algo-

rithms for the various top-k queries. Since the exact top-k results

only can be obtained in small graphs, three small datasets, ca-grqc,

ca-hepth and wiki-vote, are used in the following experiments. The

vertices for queries are the same with the one in experiments of

Section 5.2. The parameters of each algorithm are listed in Table 4.

Figure 8 only visualizes the average precision and NDCG on

ca-hepth and wiki-vote datasets for figure’s clarity, and the results

on ca-grqc is similar to the one on ca-hepth. From the figures,

we clearly see that the quality (i.e., precision and NDCG) of top-k

vertices returned by TSF is constantly higher than the other two by

changing k from 10 to 50. The superiority of TSF benefits from

its two-stage random-walk sampling framework. With the extra

Rq(=20) samples, TSF can obtain a better precision and NDCG

without incurring significant overhead. For KM and FR algorithms,

the only way to improve the quality of results is to increase R,

which brings about heavy overhead.

5.4 Comparison with TopSim Algorithms
TopSim based algorithms [16] enumerate all the random walks

of a certain length to find meeting vertices. To improve the perfor-

mance, the authors proposed two approximation algorithms, Trun-

TopSim-SM and Prio-TopSim-SM. The Trun-TopSim-SM prunes

the random walk which contributes small delta SimRank score.

While the Prio-TopSim-SM only selects and expands top-H (e.g.,

H=100) random walks at each level.

Since TopSim based algorithms and TSF use the different frame-

work, they have different parameters. We first conduct experi-

ments, which are similar to the experiments in Section 5.2, on small

graphs to determine the parameters of TopSim-based algorithms

and TSF. The length of random walk (T) in TopSim is set as 4. In

TSF, Rg and Rq are 300 and 40 respectively. With these param-

eters, two algorithms have a similar precision and NDCG. On the

ca-hepth dataset, both algorithms achieve about 94%∼98% preci-

sion and 99% NDCG with different k.

Method WG WB DB LJ WK IT TW

Trun-TopSim-SM 0.117 0.712 15.61 355.0 442.5 248.2 OOM2

Proi-TopSim-SM 0.059 0.094 1.641 38.05 2.039 1.802 41213.2

MEM-TSF 0.074 0.148 0.199 0.463 2.261 3.054 187.6

Table 6: The performance (seconds) comparison of MEM-TSF and

TopSim based algorithms.

Table 6 lists the performance comparison of MEM-TSF and Top-

Sim based algorithms with previously determined parameters on

large graphs. We clearly see that MEM-TSF outperforms Trun-

TopSim-SM on different graphs. Compared to Proi-TopSim-SM,

TSF performs significantly better on social graphs (e.g., DB, LJ and

TW datasets), and yields comparable performance on web graphs.

As mentioned before, Proi-TopSim-SM only expands H random

walks at each level, thus its performance is heavily determined by

choosing the H random walks at each level. Because social graphs

always have denser local structures than web graphs, Prio-TopSim-

SM spends much more time to generate the top-H random walks

when processing social graphs. However, TSF samples a fixed

number (Rg = 300, Rq = 40) of random walks, the local struc-

ture has little influence on it. TSF has relatively stable performance

across social graphs and web graphs.

5.5 Performance of TSF on Dynamic Graph
To show the advantages of TSF in processing large dynamic

graphs, we conduct the following experiments on four graph datasets,

2
OOM is Out of Memory error.

847

i.e., livejournal, wikipedia, it-2004 and twitter. The results demon-

strate that TSF can efficiently update the indexes when the original

graph is modified, and retain the high performance of running top-k

queries on dynamic graphs.

Since the node modification can be divided into a serial of edge

modifications (details in Section 4.1), the experiments are concen-

trated on the edge modification. We set the size of log buffer to

1000 for the experiments. To generate updating logs, we randomly

modify a certain number of edges for each real-world graph. Given

the fact that in the real-world graphs, like social networks, the num-

ber of insertions are more than the one of deletions, so the edge

modification consists of 80% edge insertions and 20% edge dele-

tions in our experiments. Considering that the log buffer is full

when 1K edge modifications are executed, during the experiments,

TSF repeatedly executes the following procedure. It first succes-

sively runs 1K updating queries and then tests the query perfor-

mance of TSF on the dynamic graph with the full log buffer. At

last the logs are merged into one-way graphs. The log-based im-

plementation of TSF is denoted by L-TSF.

Method LJ WK IT TW

L-TSF
Cu/103 0.101 0.168 0.198 0.174

Cm/102 50.62 197.76 391.77 524.14

TSF (rebuild) 69.22 294.06 519.65 830.17
FR Alg. (rebuild) 306.79 992.82 2163.50 2641.32
KM Alg. (rebuild) 999.38 779.76 4733.67 10089.09

Table 7: Updating cost (seconds) comparison between log-based TSF

and other solutions with building the index from scratch. Cu/103 is

the cost of executing 1000 edge modifications and Cm/102 is the cost

of merging 100 one-way graphs’ full log buffers.

Table 7 shows the updating performance of L-TSF by compar-

ing with the performance of rebuilding index from scratch over four

large graphs. We clearly see that a single edge modification can be

updated in about 0.2 millisecond, since this operation can be fin-

ished in O(1) time. Including the merge operation, the amortized

updating cost of L-TSF for 100 one-way graphs is less than six

seconds for processing one-billion edge graphs, like twitter and it-

2004. Furthermore, the merge operation can be executed faster than

any solutions of building index from scratch as well.

LJ WK IT TW0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q
u

e
ry

T
im

e
R

a
ti

o

MEM-TSF L-TSF

Figure 9: Query efficiency comparison between MEM-TSF and L-

TSF.

Figure 9 describes the query efficiency between MEM-TSF and

L-TSF. Here the query time only includes the cost of computing

SimRank scores (Lines 6-17 in Algorithm 4) and the cost of sorting

scores are omitted. The query time is also normalized for the clarity

of figure. The L-TSF runs on the graph with logs while MEM-TSF

runs over the graph which is obtained by merging the logs. From

the figure, we notice that L-TSF is only 2∼3 times slower than

MEM-TSF over different large graphs. In twitter dataset, L-TSF

runs a query in average 50 seconds while MEM-TSF takes about 17

seconds. The extra cost is caused by searching vertex’s neighbors

in the logs (Algorithm 5) during the updateSimRank process.

5.6 Performance of External TSF
We next show that one-way graphs can be compactly stored on

disk with the simple compression solution described in Section 4.3.

Based on the compact form of one-way graphs, TSF can still handle

large graphs when the available memory is limited.

Graph
Raw

Storage
Compact
Storage

Compression
Ratio

LJ 3.5G 3G 1.17:1
WK 14G 8.1G 1.73:1
IT 31G 25G 1.24:1

TW 29G 20G 1.45:1

Table 8: The storage of 100 one-way graphs.

We first present the four large graphs’ storages of the raw one-

way graphs and the compacted ones in Table 8. From the table, we

can figure out that the compression ratio of our proposal is around

1.5. For the wikipedia dataset, the ratio reaches 1.73. The different

ratios among datasets are caused by the characteristics of corre-

sponding degree sequence.

Method LJ WK IT TW

MEM-TSF 0.48 2.57 3.80 23.03
EXT-TSF (Raw) 33.19 129.47 282.60 289.33

EXT-TSF (Compact) 30.44 83.13 247.30 221.37

EXT-TSF
Impr. Ratio

8.3% 35.8% 12.5% 26.2%

Table 9: Query time (seconds) of EXT-TSF with different external

storage format. MEM-TSF shows the in-memory processing cost.

We further compare the performance of EXT-TSF with different

external storage format. The results are summarized in Table 9.

Compared to MEM-TSF, the query time of EXT-TSF is dominated

by the cost of loading one-way graphs in memory. By using the

compact external storage format, EXT-TSF achieves about 10% to

30% improvement of the query performance.

6. RELATED WORK
Since SimRank was first introduced by Jen and Widom [14] in

2002, there have been a lot of research works [21, 19, 26, 18, 30,

28, 10, 12, 6, 27] to optimize the computation of SimRank. The

proposed solutions can be classified into three categories. They are

exact solution of fix-point iteration, low-rank approximation solu-

tion and random-walk based approximation solution.

The authors [14] introduced the first exact solution of fix-point

iteration. The solution computes the all-pairs SimRank scores with

O(kd2N2) time in k iterations, where d is the average in-degree.

Later, Lizorkin et al. [21] improved the original solution via par-

tial sum memorization to O(kdN2) time. Yu et al. [26] used fast

matrix multiplication to speed up the all-pairs SimRank computa-

tion as well. Recently, Yu et al. [28] further enhanced the SimRank

computation to O(kd′N2) time (with d′ < d) through fine-grained

memorization. For computing a single-pair SimRank score, Li et

al. [20] developed a method by iteratively computing the position

matrix in O(kd2 min{dk, N2}) time. All these solutions require

O(N2) space. Due to the high time and space complexity, they

cannot support similarity search on large graphs.

Low-rank approximation techniques are one of good strategies to

approximately compute the SimRank scores for similarity search.

Li et al. [18] proposed a novel non-iterative matrix formulation for

SimRank and pre-compute four auxiliary matrices via Kronecker

product [11] and SVD in O(r4N2) time, where r is the target rank

of transpose matrix of the original graph. Then the similarities with

respect to the given vertex can be computed in O(Nr4) time. Of

848

late Fujiwara et al. [10] improved the performance of similarity

search to O(Nr) via the Sylvester equation. Yu et al. [27] devel-

oped an efficient SimRank computation algorithm on undirected

graphs with eigenvalue decomposition technique. But low-rank ap-

proximation solutions are not feasible to process large graphs as

well, because their performance is limited by the expensive cost of

preprocessing. For example, the SVD algorithm requires O(rN2)
time to decompose a matrix of size N .

Another branch of approximation solutions are based on the ran-

dom walks. Fogaras and Rácz [9] proposed the first random-walk

based algorithm for fast SimRank search. The algorithm precom-

putes independent sets of fingerprints which index the first-meeting

times through Monte-Carlo sampling in O(NR) time and space.

The similarity can be approximated from the fingerprints at query

time. Recently Kusumoto et al. [15] formalized the SimRank as

linear recursive formula and obtained upper bounds via Cauchy-

Schwartz inequality. Then they used random-walk sampling to es-

timate a single-pair SimRank score as well as the upper bound. The

preprocessing cost is O(NRT) time, where T is the number of

steps and R is the number of samples. Unlike the aforementioned

two solutions, Lee et al. [16] proposed TopSim-based algorithms

which compute SimRank scores by enumerating all the similarity

paths (random walks). To improve the performance of TopSim-

based algorithms, Lee also designed heuristic rules to prune ran-

dom walks during the computation. Our TSF is also a random-walk

based approximation solution. But TSF is the first solution which

indexes the raw random walks with low cost meanwhile the indexes

can be updated efficiently when graph changes.

Next we discuss the works about computing SimRank scores on

dynamic graphs. Li et al. [18] proposed the first incremental algo-

rithm for SimRank updating. The solution decomposes the trans-

pose matrix W of the original graph into UΣV via SVD first, and

then incrementally updated the matrices U,Σ,V by further de-

composing the difference matrix ∆W according to the graph up-

dating. The solution requires O(N2) time to update the all vertex

pairs. Recent Yu et al. [29] improved the solution by using rank-

one Sylvester matrix equation, thus updating all vertex pairs costs

O(K(nd + |AFF |)) time, where |AFF | is the size of affected

areas when the graph is updated. Since these incremental solutions

depend on the old all-pairs SimRank scores, which entails O(N2)
space complexity, they cannot be trivially extended onto large dy-

namic graphs. In TSF, it only needs to maintain one-way graphs

whose space overhead is linear to the size of original graph.

Finally, we briefly discuss the graph sampling [17] which is re-

lated to our one-way graph. The purpose of graph sampling is to

generate a representative sample from original graph while retain-

ing some interesting measures. One-way graph is a sampled sub-

graph to preserve the probability of arbitrary walks which has never

been mentioned before to the best of our knowledge. Addition-

ally, the sampling method in TSF is different from the traditional

ones [17].

7. CONCLUSION
In this paper, we proposed a two-stage random-walk sampling

framework, TSF, to efficiently execute top-k similarity search on

large dynamic graphs. TSF utilizes the one-way graph to directly

index random walks in a novel manner, and uses the indexed ran-

dom walks to process top-k queries efficiently. The advantage of

TSF not only lies in the fact that the one-way graph can be quickly

built by preprocessing, but also can be updated efficiently when the

original graph changes. Our comprehensive experimental studies

have clearly demonstrated the superiority of TSF over the state-of-

the-art algorithms.

ACKNOWLEDGMENTS
The research is supported by the National Natural Science Foun-
dation of China under Grant No. 61272155 and 61472009, Beijing
Natural Science Foundation(4152023), and Microsoft Research Asia
Collaborative Research Award. Lei Chen’s work is supported in
part by the Hong Kong RGC/NSFC Project N HKUST 637/13, Na-
tional Grand Fundamental Research 973 Program of China under
Grant 2012-CB316200, and Google Faculty Award 2013.

8. REFERENCES
[1] I. Antonellis, H. G. Molina, and C. C. Chang. Simrank++: Query rewriting

through link analysis of the click graph. In PVLDB, pages 408–421, 2008.

[2] L. Arge. The buffer tree: A new technique for optimal i/o-algorithms. In WADS,

volume 955, pages 334–345, 1995.

[3] T. I. M. Association. Standard midi-file format spec. 1.1.

[4] B. Balkenhol and Y. M. Shtarkov. One attempt of a compression algorithm

using the bwt, 1999.

[5] A. A. Benczúr, K. Csalogány, and T. Sarlós. Link-based similarity search to

fight web spam. In AIRWEB, pages 9–16, 2006.

[6] L. Cao, B. Cho, H. D. Kim, Z. Li, M.-H. Tsai, and I. Gupta. Delta-simrank

computing on mapreduce. In BigMine, pages 28–35, 2012.

[7] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to

Algorithms. 2nd edition, 2001.

[8] B. Cui, H. Mei, and B. C. Ooi. Big data: the driver for innovation in databases.

National Science Review, 1(1):27–30, 2014.

[9] D. Fogaras and B. Rácz. Scaling link-based similarity search. In WWW, pages

641–650, 2005.

[10] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, and M. Onizuka. Efficient search

algorithm for simrank. In ICDE, pages 589–600, 2013.

[11] D. A. Harville. Matrix Algebra From a Statistician’s Perspective. Springer,

corrected edition, Nov. 2000.

[12] G. He, H. Feng, C. Li, and H. Chen. Parallel simrank computation on large

graphs with iterative aggregation. In KDD, pages 543–552, 2010.

[13] W. Hoeffding. Probability inequalities for sums of bounded random variables,

1962.

[14] G. Jeh and J. Widom. Simrank: A measure of structural-context similarity. In

KDD, pages 538–543, 2002.

[15] M. Kusumoto, T. Maehara, and K.-i. Kawarabayashi. Scalable similarity search

for simrank. In SIGMOD, pages 325–336, 2014.

[16] P. Lee, L. V. S. Lakshmanan, and J. X. Yu. On top-k structural similarity search.

In ICDE, pages 774–785, 2012.

[17] J. Leskovec and C. Faloutsos. Sampling from large graphs. In KDD, pages

631–636, 2006.

[18] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu. Fast computation of

simrank for static and dynamic information networks. In EDBT, pages

465–476, 2010.

[19] P. Li, Y. Cai, H. Liu, J. He, and X. Du. Exploiting the block structure of link

graph for efficient similarity computation. In PAKDD, pages 389–400, 2009.

[20] P. Li, H. Liu, J. Xu, Y. Jun, and H. X. Du. Fast single-pair simrank computation.

In SDM, pages 571–582, 2010.

[21] D. Lizorkin, P. Velikhov, M. Grinev, and D. Turdakov. Accuracy estimate and

optimization techniques for simrank computation. In PVLDB, pages 45–66,

2010.

[22] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile

graph matching algorithm and its application to schema matching. In ICDE,

pages 117–128, 2002.

[23] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

recipes 3rd edition: The art of scientific computing. 2007.

[24] C. P. Robert and G. Casella. Monte carlo statistical methods (springer texts in

statistics). 2005.

[25] W. Xi, E. A. Fox, W. Fan, B. Zhang, Z. Chen, J. Yan, and D. Zhuang.

Simfusion: Measuring similarity using unified relationship matrix. In SIGIR,

pages 130–137, 2005.

[26] W. Yu, X. Lin, and J. Le. A space and time efficient algorithm for simrank

computation. In APWEB, pages 164–170, 2010.

[27] W. Yu, X. Lin, and J. Le. Taming computational complexity: Efficient and

parallel simrank optimizations on undirected graphs. In WAIM, pages 280–296,

2010.

[28] W. Yu, X. Lin, and W. Zhang. Towards efficient simrank computation on large

networks. In ICDE, pages 601–612, 2013.

[29] W. Yu, X. Lin, and W. Zhang. Fast incremental simrank on link-evolving

graphs. In ICDE, pages 304–315, 2014.

[30] W. Yu, X. Lin, W. Zhang, L. Chang, and J. Pei. More is simpler: Effectively and

efficiently assessing node-pair similarities based on hyperlinks. In PVLDB,

pages 13–24, 2013.

[31] W. Zheng, L. Zou, Y. Feng, L. Chen, and D. Zhao. Efficient simrank-based

similarity join over large graphs. In PVLDB, pages 493–504, 2013.

849

	Introduction
	Background
	SimRank
	Monte-Carlo Based Estimation

	A Novel Framework for SimRank based Similarity Search
	Overview of TSF
	One-Way Graph
	Approximation Random Model
	Efficient Top-k Similarity Search
	Error of Approximation

	TSF on Large Dynamic Graphs
	Semantics of One-way Graph Updating
	Log-based Implementation
	External Storage Format of One-way Graph

	Experimental Evaluation
	Experiment Environment
	Selection of Rq
	Comparison with FR and KM Algorithms
	Comparison with TopSim Algorithms
	Performance of TSF on Dynamic Graph
	Performance of External TSF

	Related Work
	Conclusion
	References

